Abstract:
A flexible substrate has a major surface and a sensor attached to and aligned with the major surface of the substrate. The sensor may have an elastic body containing conductive nanotubes homogeneously distributed therein to form a conductive path and at least two electrodes in electrical connection with the conductive path. Balloons and flexible elements used in medical procedures are particularly useful. A flexible responsive model has a major surface and a sensor attached to and aligned with the major surface of the responsive model. The sensor may have an elastic body containing conductive nanotubes homogeneously distributed therein to form a conductive path and at least two electrodes in electrical connection with the conductive path. Balloons and flexible elements used in medical procedures are particularly useful.
Abstract:
Die Figur betrifft eine Messvorrichtung zum Bestimmen des Kompressionsdrucks von therapeutischen Kompressionsmassnahmen (7) umfassend einen Grundkörper (1) sowie einen den Grundkörper (1) umschliessenden Verformungskörper (4), der aus einem verformbaren Material besteht, wobei auf dem Verformungskörper (4) eine Druckmessschicht (5) vorgesehen ist, die mit einer Auswerteeinheit (8, 9) verbunden ist und wobei auf der Druckmessschicht (5) die therapeutische Kompressionsmassnahme (7) unmittelbar oder mittelbar anbringbar ist.
Abstract:
Systems and methods facilitating training in clinical procedures via mixed reality simulations are disclosed. Such a system can comprise a physical model and a virtual model of an anatomic region associated with the procedure, wherein the virtual model associates tissue types with locations in the physical model. The system can include a tracking component that tracks locations of at least one clinical instrument relative to the models, and an anatomic feedback component that can produce perceptible changes in the physical model based on the interaction between the instrument and virtual model. A clinical device interface can detect outputs of clinical devices like electrical signals, pressure or flow, wherein feedback to the physical model depends on the tracked position of a clinical device and output from the same or different clinical device. Another component can generate feedback effects to the clinical device. Aspects can simulate anesthesiology procedures like local nerve blockade.
Abstract:
A wearable device for simulating wounds and injuries received during a trauma event includes a raiment and vest for covering the torso of a person. The raiment has an outer surface with a color and a texture comparable to human skin. Mounted on the outer surface is at least one wound simulator formed with an orifice that is in fluid communication with a fluid reservoir. Thus, the person can selectively expel a blood-like fluid from the reservoir, and through the wound simulator orifice, to simulate a trauma event. The vest includes an artificial rib cage and prosthetic internal organs juxtaposed with at least one wound simulator to simulate internal effects of a trauma event.
Abstract:
Apparatus for simulating a female vagina includes a pressure chamber, a vaginal model disposed in a pressure chamber and means to deliver liquid into the vaginal model. The pressure chamber includes an interior, first means to provide fluid pressure to the pressure chamber, and second means to provide localized fluid pressure within the pressure chamber. The vaginal model includes a wall that (1 ) defines a vaginal lumen extending inwardly from a vaginal opening associated with a bore through an exterior surface of the pressure chamber to vaginal fornices adjacent a cervical port; (2) has an outer surface comprising an anterior vaginal surface and a posterior vaginal surface; and (3) has at least one passage for providing a fluid to the cervical port. Methods for using this apparatus are also disclosed.
Abstract:
A simulator for driving a prosthetic element includes a prosthetic drive mechanism that drive the prosthetic element during an accelerated wear test of the prosthetic element. A simulation input represents the action of the simulator and a sensor mechanism is used to measure the force and torque applied to the prosthetic element. Position and orientation control sensors are further used to measure displacement of the prosthetic element. A closed loop feedback control system, responsive to the sensors, is used to determine a drive signal for the drive mechanism. The control system advantageously adds a computational model that incorporates mechanical representations of ligament fibers. The computational model is a non-human approximation to situations that would be encountered by the prosthesis within the human body and includes dimensional geometry of insertion sites and mechanical properties of ligament fibers. The computational model is responsive to the position and angular displacement sensors to determine constraint forces and torques of ligaments that mitigate action of the control system. The action of the control system may further be mitigated by the measured force and torque.
Abstract:
A digestive tract simulator, comprising hydraulically interconnected at least two elastic bags (12) kept at the constant temperature and a controllable heating source, wherein a heating source is represented by a heated temperating plate (2) over whose working surface intended for placing of elastic bags (12) two levers (7) are arranged in an axial distance, swinging around a common axis; to these levers (7) a deflected wing (3) placed in parallel with the temperating plate (2) and having working arms opened in a wide angle in direction from the temperating plate (2) is mounted on the lever's side near to the temperating plate (2); at least one of levers (7) is connected to a pendulum engine (4) having an adjustable motion so that elastic bags (12) are in operating state situated between the working surface of the temperating plate (2) and the deflected wing (3); each of bags (12) is equipped by an air cock (127) and an input and output pipe channel (126) for working medium, connecting bags (12) together via tubing coupled through a peristaltic pump (5).
Abstract:
Vorrichtung (1) zur Simulation von Hüftgelenkersatzoperationen umfassend A) eine Grundplatte (2) mit einer Längsseite (20), einer Querseite (21) und einer Deckfläche (8), auf welcher eine sich entlang einer Längsachse (7) erstreckende erste Lagervorrichtung (4) zur Aufnahme eines proximalen Oberschenkelknochenabschnitts (16) mit einem Hüftgelenkkopf (18) und in einem Abstand D > 0 quer zur Längsachse (7) gemessen eine zweite Lagervorrichtung (3) zur variablen und lösbaren Fixierung eines Beckenknochenteiles (15) mit einer Hüftgelenkpfanne (17) angeordnet sind, wobei B) die erste Lagervorrichtung (4) ein Stützteil (9) mit einer auf der Deckfläche (8) der Grundplatte (2) aufliegenden Unterseite (10) und einer dieser gegenüberliegenden Oberseite (11), und ein an der Oberseite (11) des Stützteils (9) befestigtes rohrförmiges Lagerteil (5) mit einer Länge L umfasst; wobei C) das Stützteil (9) in einer zur Deckfläche (8) der Grundplatte (2) parallelen Ebene schwenkbar mit der Grundplatte (2) verbunden ist; D) das rohrförmige Lagerteil (5) in einer zur Deckfläche (8) der Grundplatte (2) senkrecht stehenden Ebene schwenkbar ist; und E) das rohrförmige Lagerteil (5) koaxial zur Längsachse (7) angeordnet ist und ein gegen die erste Lagervorrichtung (3) gerichtetes erstes Ende (12), axial entgegengesetzt ein zweites Ende (13) und einen koaxialen Hohlraum (6) zur um die Längsachse (7) rotierbaren Aufnahme mindestens eines proximalen Oberschenkelknochenabschnitts (16) umfasst.
Abstract:
A respiratory heat and moisture exchanger for adjusting temperature and moisture of gas to be inhaled and having a heat storage carrier material and a moisture absorption and release material, wherein a gradient along a direction of flow of respiration gas that passes through the respiratory heat and moisture exchanger is provided to at least one property selected from the properties of density, surface area, perforation rate, and number of cells of the heat storage carrier material that constitutes the respiratory heat and moisture exchanger, or additive density and moisture absorption and release capability of the moisture absorption and release material added to the respiratory heat and moisture exchanger.