Abstract:
In an optical system having multiple cascaded splitter/combiners, a trunk port and/or a drop port is configured for at least one of the splitter/combiner units. Drop ports may be configured with an average gain control, and the trunk ports may be configured to have individual gain control to provide a more precise overall gain and to maintain adequate signal levels. Embodiments apply to evolving RFoG architectures designed to serve a large number of subscribers without suffering from OBI (Optical Beat Interference) by retransmitting an optical signal through cascading splitters/combiners.
Abstract:
A method for transforming high dynamic range (HDR) video data into standard dynamic range (SDR) video data and encoding the SDR video data so that the HDR video data may be recovered at the decoder includes generating a tone map describing a transformation applied to the HDR video data to generate the SDR video data. The generated tone map describes the transformation as the multiplication of each HDR pixel in the HDR video data by a scalar to generate the SDR video data. The tone map is then modeled as a reshaping transfer function and the HDR video data is processed by the reshaping transfer function to generate the SDR video data. The reshaping transfer function is then inverted and described in a self-referential metadata structure. The SDR video data is then encoded including the metadata structure defining the inverse reshaping transfer function.
Abstract:
Synchronizing SBS suppressing optical phase/frequency modulation of each of a plurality of optical transmitters can be achieved with a plurality of optical transmitters conveying a plurality of optical carriers; and a synchronizer coupled to each of the plurality of optical transmitters to synchronize the SBS suppressing optical phase/frequency modulation of each of the plurality of optical carriers.
Abstract:
Particular embodiments provide a method for delivering data in the upstream direction without the need for upstream radio frequency (RF) modulation. For example, in some embodiments, an optical network may reach to a gateway associated with a user device. The gateway may receive digital baseband data from the user device in the upstream direction. The gateway can then send the digital baseband data through the optical network without modulating the digital baseband signal via radio frequency. At the headend, because no modulation is performed in the upstream direction, there is no need for de-modulation in the headend. In one embodiment, a scheduler-based approach is used to avoid instances of optical beat interference in the upstream direction as only one upstream device that may interfere with other devices may be able to send data at one time.
Abstract:
A method of operating a server and an IP client device for presentation of video content to a viewer that includes a trickplay function. The server partitions media chunks into several sub chunks and includes information about the sub chunks in a manifest. The client plays the needed sub chunks to implement a desired play rate. As an alternative to providing sub chunk information in the manifest, the server sends key frame information in the manifest. The client plays needed frames of the key frames to implement a desired play rate. The sub chunk information as well as key frame information is encoded into the manifest as a standard comment or chunk filename. In another alternative, the IP client sends a trickplay request and based on that, the server signals either the sub chunks to be played or the key frames to be played to affect the desired speed. In yet another variation, the server can also remove the unwanted sub chunks or key frames to affect the desired play rate at the IP client.
Abstract:
A radio frequency over glass (RFoG) system may be modified to extend a downstream band. A transimpedance amplifier with a downstream path may be used in the RFoG system in combination with an upstream path having greater than 200 MHz radio frequency (RF) bandwidth to provide the greater than 1.2 GHz downstream bandwidth overlapping with the greater than 200MHz upstream bandwidth. The RFoG system may include a gateway facilitating an optical network unit and modem connection, the gateway having an express upstream port and an express downstream radio frequency (RF) port. The gateway may be configured for processing legacy RFoG signals in an upstream and a downstream direction and for at least one of generating or processing, via the express ports on the modem, RFoG signals in an extended spectrum beyond 42 MHz in the upstream direction and beyond 1000 MHz in the downstream direction.
Abstract:
A fan (200) includes a housing (201) defining a duct (202). A spindle (203) can be concentrically located about a central axis within the duct. One or more fan blades (205, 206, 207) extending radially from the spindle toward a surface of the duct. Each fan blade is pivotable about a radial axis (208) between a closed position (400) where the each fan blade is in contact with each adjacent fan blade and an axially displaced open position (300) where the each fan blade is physically separated from the each adjacent fan blade. This prevents recirculation of air if a fan should fail.
Abstract:
A HFC network includes an optical node, a first fiber optic cable, and a second fiber optic cable. The first fiber optic cable has a first end that is connected to the optical node for delivering signals to the optical node. The second fiber optic cable has a first end that is positioned within the optical node. Optical fibers of the first optic cable are ribbonized and spliced to ribbonized optical fibers of the second fiber optic cable at a spliced connection such that signals can be transmitted between the fiber optic cables. An optical fiber of the first fiber optic cable is spliced to a connectorized fiber pigtail at a spliced connection, and the connectorized fiber pigtail is optically connected to a broadband optical transceiver in the optical node. The spliced connections are stored in a fiber splice tray within the optical node.
Abstract:
A system and method of reducing blocking artifacts and providing enhanced coding efficiency based, as least in part, upon evaluation of relative smoothness of signals at a coding boundary. In some embodiments, a boundary threshold difference can be established beyond which it is determined that the difference is representative of a natural or intended boundary and filtering can be applied to those boundaries having differences below the boundary threshold difference. In some further embodiments, the ramps of the signal across the boundary can be evaluated to determine whether weak or strong filtering might be appropriate. In some further embodiments, weak filtering can be performed that reduces blocking artifacts, improves coding efficiency, but does not distort ramp signals across the boundary.