Abstract:
Techniques for performing adaptive channel estimation are described. A receiver derives channel estimates for a wireless channel based on received pilot symbols and at least one estimation parameter. The receiver updates the at least one estimation parameter based on the received pilot symbols. The at least one estimation parameter may be for an innovations representation model of the wireless channel and may be updated based on a cost function with costs defined by prediction errors. In one design, the receiver derives predicted pilot symbols based on the received pilot symbols and the at least one estimation parameter, determines prediction errors based on the received pilot symbols and the predicted pilot symbols, and further derives error gradients based on the prediction errors. The receiver then updates the at least one estimation parameter based on the error gradients and the prediction errors, e.g., if a stability test is satisfied.
Abstract:
Techniques for performing equalization at a receiver are described. In an aspect, equalization is performed by sub-sampling an over-sampled input signal to obtain multiple sub-sampled signals. An over-sampled channel impulse response estimate is derived and sub-sampled to obtain multiple sub-sampled channel impulse response estimates. At least one set of equalizer coefficients is derived based on at least one sub-sampled channel impulse response estimate. At least one sub-sampled signal is filtered with the at least one set of equalizer coefficients to obtain at least one output signal. One sub-sampled signal (e.g., with largest energy) may be selected and equalized based on a set of equalizer coefficients derived from an associated sub-sampled channel impulse response estimate. Alternatively, the multiple sub-sampled signals may be equalized based on multiple sets of equalizer coefficients, which may be derived separately or jointly. The equalizer coefficients may be derived in the time domain or frequency domain.
Abstract:
Techniques to mitigate spikes in transmit power, by reducing the magnitude and/or duration of the spikes, are described. Initially, power control is performed in a normal manner and in accordance with a transmit power control (TPC) scheme. If a (e.g., upward) transmit power spike is detected, the power control is performed in a manner to mitigate the adverse effects of the spike and in accordance with another TPC scheme. An upward transmit power spike may be detected, e.g., if a predetermined number of consecutive TPC commands in the upward direction is obtained for increasing transmit power. The upward transmit power spike may be mitigated by limiting the transmit power, reducing the rate of transmit power adjustment in the upward direction, delaying and/or filtering TPC decisions used for transmit power adjustment, preventing upward adjustment of transmit power, and so on. Multiple states may be defined and used to facilitate power control with spike mitigation.
Abstract:
Systems and techniques are disclosed relating to wireless communications. These systems and techniques involve wireless communications wherein a device may be configured to recover an information signal from a carrier using a reference signal, detect a frequency error in the information signal; and periodically tune the reference signal to reduce the frequency error. To prevent GPS performance degradation during LO tuning, a tuning indicator signal may be generated and provided to the GPS receiver to disable GPS operation.
Abstract:
Techniques for inner/outer loop tracking that is stable and provides desirable loop convergence characteristics are disclosed. In one aspect, the contribution from any one inner loop to the tracking function of the outer loop (260) is limited, to prohibit any one received signal component from dominating the outer loop. In another aspect, the rate of outer loop tracking variation is controlled to provide inner and outer loop stability. Various other aspects are also presented. These aspects have the benefit of providing stable inner and outer loop control, as well as efficient convergence and tracking by the various loops, resulting in reduced frequency error and improved communication performance.
Abstract:
Techniques for time tracking diversity pilots are disclosed. In one aspect, an early (462) and a late (482) energy calculation is made on each incoming symbol using a first pilot sequence for despreading (452, 458). The difference between the two energies (464) is used to drive a tracking loop (490), which generates a time reference for producing a first pilot estimate and a second pilot estimate (640), the two estimates used for demodulating data (630). In another aspect, the early and late energies are made including a plurality of incoming symbols, the number of which corresponds to the number of symbols in a run of positive or negative values in an orthogonalizing sequence. The orthogonalizing sequence is used to generate a second pilot sequence from a first pilot sequence, the resulting second pilot sequence being orthogonal to the first. These aspects have the benefit of simplifying the hardware or processing steps required for transmit diversity time tracking, resulting in cost savings, power savings, simplicity of design, and the like.
Abstract:
Techniques for improved handoff searching in asynchronous systems, such as W-CDMA, are disclosed. In one aspect, a two-step (220, 230) search procedure is used when a list of neighbor codes is known. In the first step (220), a received signal is correlated with a slot timing code to locate on or more pilots and the slot boundaries associated therewith. In the second step (230), the received signal is correlated with each of the list of codes at the slot boundaries identified with pilots in the first step to identify the pilot code and the frame timing associated with each pilot. Various other aspects of the invention are also presented. These aspects have the benefit of decreasing search time, which translates to increased acquisition speed, higher quality signal transmission, increased data throughput, decreased power, and improved overall system capacity.
Abstract:
A method, a computer-readable medium, and an apparatus are disclosed for energy efficient multichannel communications. In one aspect, the apparatus may communicate using a plurality of channels working in parallel where the plurality of channels may share an LNA. Additionally, the apparatus may determine a set of parameters for the plurality of channels to maximize energy efficiency. The apparatus may therefore configure the plurality of channels based on the set of parameters. As such, the apparatus supports multichannel communications with a common LNA structure while providing energy optimization for the multichannel communications. Accordingly, multichannel communications can be provided using a shared LNA structure that reduces implementation cost and more efficiently utilizes available power resources.
Abstract:
A method, an apparatus, and a computer program product for communication within a wireless terminal. The method can be implemented using dedicated logic and managed and controlled by state machines and/or sequencers. Data received or provided in a memory of a first integrated circuit of a terminal is encoded and transmitted in a data packet to a second integrated circuit. A header identifying the data type and providing a destination is included in the data packet. The destination may be identified as a memory address memory of the second integrated circuit that is mapped to a corresponding memory address of the first integrated circuit at which the data is received. In an aspect, the apparatus receives a header, detects an error in the received header, determines a failure to identify a packet boundary when the error is detected, and performs a search operation to identify the packet boundary.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in which PAPR for an input of an AGC in a wireless receiver is generated. The AGC may provide a gain-controlled signal to a correlator when the PAPR of the input does not exceed the threshold ratio and may clamp the gain of the gain-controlled signal when PAPR of the input is large. A large PAPR may cause termination of search for a signal of interest in a current channel. The search may be resumed in a non-adjacent channel.