Abstract:
In a calibration of a lighting system with at least one light source and a light source driver, and a light source driver controller controlling the light source driver, separate components are calibrated separately before combining them. For this purpose, the light source is coupled with a light source memory, the light source is calibrated by determining a light source operational relationship between a light source input parameter and a light source output parameter, and light source control data representative of the light source operational relationship are stored in the light source memory. The light source driver is coupled with a light source driver memory, the light source driver is calibrated by determining a light source driver operational relationship between a light source driver input parameter and a light source driver output parameter, and light source driver control data representative of the light source driver operational relationship are stored in the light source driver memory. After these separate calibrations, the light source is assembled with the light source driver, and the light source driver controller is calibrated on the basis of the light source control data and the light source driver control data read from the light source memory and the light source driver memory. If a sensor is used in the lighting system to sense the light produced by the light source, the sensor is coupled with a sensor memory, the sensor is calibrated by determining a sensor operational relationship between a sensor input parameter and a sensor output parameter, and sensor control data representative of the sensor operational relationship are stored in the sensor memory. After assembling the sensor with the light source and the light source driver, the light source driver controller is calibrated further on the basis of the sensor control data read from the sensor memory.
Abstract:
In a calibration of a lighting system with at least one light source and a light source driver, and a light source driver controller controlling the light source driver, separate components are calibrated separately before combining them. For this purpose, the light source is coupled with a light source memory, the light source is calibrated by determining a light source operational relationship between a light source input parameter and a light source output parameter, and light source control data representative of the light source operational relationship are stored in the light source memory. The light source driver is coupled with a light source driver memory, the light source driver is calibrated by determining a light source driver operational relationship between a light source driver input parameter and a light source driver output parameter, and light source driver control data representative of the light source driver operational relationship are stored in the light source driver memory. After these separate calibrations, the light source is assembled with the light source driver, and the light source driver controller is calibrated on the basis of the light source control data and the light source driver control data read from the light source memory and the light source driver memory. If a sensor is used in the lighting system to sense the light produced by the light source, the sensor is coupled with a sensor memory, the sensor is calibrated by determining a sensor operational relationship between a sensor input parameter and a sensor output parameter, and sensor control data representative of the sensor operational relationship are stored in the sensor memory. After assembling the sensor with the light source and the light source driver, the light source driver controller is calibrated further on the basis of the sensor control data read from the sensor memory.
Abstract:
The present invention relates to a control system (12) for controlling the light output of a light emitting unit (10), which light emitting unit comprises at least one light emitting diode (LED) (14) and is adapted to emit light of at least one color, the control system comprising: a sensor unit (18) adapted to detect the light output of the light emitting unit and provide a corresponding feedback signal; and a control unit (22) adapted to control the light output of the light emitting unit based on a comparison between the feedback signal and a corresponding reference signal representing a desired light output, in order to provide an improved light output, wherein the control unit is further adapted to: determine a random switching period; determine on-time(s) for the LED(s) within the random switching period for providing the improved light output; and control energizing of the LED(s) according to the determined period and on-time(s). The present invention also relates to an LED light emitting unit arrangement, and a method for controlling the light output of an LED light emitting unit.
Abstract:
A luminaire arrangement for providing a luminous flux in a target direction (z) comprising a light guide (101), multiple light sources (103) arranged at said light guide for emitting light into said light guide, out coupling means (106) arranged at said light guide and adapted to direct light out from said light guide; and a cover layer (102) arranged in front of said light guide at the side where light it to be directed out, said cover layer being provided with at least one optically transparent area (104) such that light directed out from said light guide is allowed to pass said cover layer. The cover layer allows for use of the same or similar light guide, light sources and out coupling means in a number of different luminaire applications, where each application may have different requirements on e.g. appearance, and/or collimation and/or directivity of the luminous flux.
Abstract:
A white light source (1) comprising an array of at least one blue light source (2), at least one green light source (3), and at least one red light source (4) is disclosed. The blue light source (2) comprises a first light emitting diode (2') capable of emitting light at a first wavelength. A first wavelength-converting material (2") is arranged to absorb at least a portion of the light of the first wavelength, and the first wavelength-converting material (2") is capable of emitting light at a second wavelength, which is at least 500 nm.
Abstract:
A controller (3), for a variable color lighting system (1) comprising a plurality of lighting devices (LD 1-n ), the controller (3) comprising means (10) for receiving a request (S r ) for an output color to be emitted by the variable color lighting system (1), and communication means (12) adapted to send control signals (C 1 , C 2 ) indicative of the request to at least one of the lighting devices (LD 1-n ), thereby enabling emission of the output color. The controller (3) further includes processing means (13) adapted to access data indicative of color gamuts (G 1 , G 2 ) of at least two of the lighting devices (LD 1 , LD 2 ), and determine a color emission capability (G tot ) based on the accessed data.
Abstract:
The present invention relates to a control system (10; 30; 50) for a LED luminary (12) including a plurality of LED light sources of multiple colors for producing a mixed color light. The control system comprises means (22) for controlling the LED light sources in accordance with a difference between set point values representing a desired light output and first control data provided by at least one optical sensor (14; 32) responsive to a property of the light produced by the LED light sources. The control system is characterized by means (26; 38) for compensating said set point values in accordance with second control data provided by a temperature sensor (24) responsive to the temperature of the optical sensor(s) (14; 32). The additional temperature sensor makes it possible to compensate for changes in the spectral sensitivity of the optical sensor(s), whereby the color stability of the LED luminary with integrated optical sensors can be increased. The invention also relates to a corresponding control method.
Abstract:
A light emitting diode (LED) lighting system for producing white light is disclosed. The system comprises sets of LEDs arranged to emit light with different wavelength ranges and associated with different sets of characteristics, and a driving circuit arranged to drive the LEDs. The driving circuit comprises an input for desired light intensity, color rendering index, and color temperature, an input for signals for LED temperature, a model for determining driving currents for said sets of LEDs from said parameters, signals, and characteristics for each of said sets of LEDs; and a current driver for the LEDs. At least one of the sets of LEDs comprises a first subset of LEDs with a first wavelength sub-range and a first set of characteristics, and a second subset of LEDs with a second wavelenght sub- range and a second set of characteristics. A lumped wavelength range of the set of LEDs is a range of said first and second wavelength sub-ranges, and the set of characteristics of the set of LEDs is a function of said first and second sets of characteristics. A method for controlling the sets of LEDs is also disclosed.
Abstract:
Low-pressure mercury vapor discharge lamp comprises a light-transmitting discharge vessel (10) enclosing, in a gastight manner, a discharge space (13) provided with a filling of mercury and a rare gas. The discharge vessel comprises discharge means (20a; 20b) for maintaining a discharge in the discharge space. The discharge vessel is provided with a container comprising an amalgam (2). The container is provided with releasing means (4) for the controlled release of mercury vapor from the amalgam. The releasing means is open during lamp operation and is substantially closed when, during lamp operation, the temperature of the amalgam becomes higher than a pre-determined temperature. Preferably, the pre-determined temperature corresponds to a temperature of a range of temperatures at which the mercury-vapor pressure above the amalgam is relatively stable.
Abstract:
Low-pressure mercury vapor discharge lamp has a light-transmitting discharge vessel (10) enclosing, in a gastight manner, a discharge space (13) provided with a filling of mercury and a rare gas. The discharge vessel (10) comprises discharge means for maintaining a discharge in the discharge space (13). The discharge vessel is provided with a source of mercury (7). In addition, the discharge vessel is provided with a releasing means (8) for the controlled release of mercury vapor from the source of mercury. The releasing means is operative in response to a condition of the low-pressure mercury vapor discharge lamp, the condition being a characteristic of the discharge lamp and/or a pre-determined time interval. The discharge lamp according to the invention operates under unsaturated mercury conditions. Preferably, the releasing means is operated via a switch device, preferably comprising a reed relay.