Abstract:
A workpiece centring assembly comprising a workpiece support surface and sleeve, the workpiece support surface and sleeve being arranged for relative rotation, and jaws arranged for movement with respect to the workpiece support surface to centre the workpiece on the workpiece support surface, further comprising elongate bearings arranged for rotation with the workpiece support surface, slidable members supporting the jaws and arranged for movement along the elongate bearings, and connectors having pivotal couplings to respective slidable members and the sleeve, wherein the relative rotation causes the connectors to pivot about their pivotal couplings to allow movement of the slidable members along the elongate bearings and consequential movement of the jaws with respect to the workpiece support surface.
Abstract:
There is described a landing gear having a bogie including a elongated beam (2) for accommodating at least two axles receiving each a pair of ground engaging wheels, at least one axle (5) being pivotally mounted on the elongated beam. The landing gear further includes axle travel limitation means (10) extending between said pivotable axle and said elongated beam to be hitched up thereto, said travel limitation means being deformable one way starting from an stable and lockable state thereof corresponding to a landing position of said pivotable axle. There are also described independently lockable and actuatable telescopic struts.
Abstract:
An aircraft landing gear assembly including a bogie beam, a landing gear strut (1) having a first end arranged to be pivotally coupled to an aircraft and a second end pivotally coupled to the bogie beam (3), and a stop (13) arranged to limit pivotal movement of the bogie beam relative to the landing gear strut, wherein the stop comprises at least one elongate member arranged to be deflectable in bending when the bogie beam reaches a pivotal limit.
Abstract:
Method for manufacturing a photovoltaic module (1) comprising: a) providing an electrically conductive substrate, the substrate being provided with a predetermined electrical pattern; b) depositing a solder paste (7) onto the electrically conductive substrate at pre-defined interconnection locations; c) placing a first encapsulant layer (3) provided with a pattern of openings onto the electrically conductive substrate, the pattern of openings corresponding with the locations of the solder paste (7); d) placing back-contact solar cells (4) on the first encapsulant layer so as to have a match of the electrical pattern of the back-contact solar cells with the electrical pattern of the electrically conductive substrate; e) placing a second encapsulant layer (5) on the back-contact solar cells (4), and placing a glass layer (6) on the second encapsulant layer (5); f) applying heat and pressure to the components (2, 3, 4, 5, 6, 7) to cause the encapsulant materials to flow and form a monolithic photovoltaic module, characterised by local application of at the interconnection locations utilizing a laser to couple its energy locally into the solar cell from the side of the glass layer, so as to cause the solder paste to reflow between each interconnection location and its respective matching connection location on the back-contact solar cell for establishing electrical interconnection between the back-contact solar cells and the electrically conductive substrate.
Abstract:
A system for restricting spinal flexion includes superior and inferior tether structures joined by a pair of compliance members. Compliance members comprise tension members which apply a relatively low elastic tension on the tether structures. By placing the tether structures on or over adjacent spinous processes, flexion of a spinal segment can be controlled in order to reduce pain.
Abstract:
An overload detecting assembly comprising a lateral probe (18) which cooperates with a first load bearing member (10) as it moves towards a second load bearing member (11) and in turn deflects an indicator member (20) which may take a permanent set when a yield point is exceeded. Ready inspection of the indicator member reveals whether or not it has been bent. The indicator member may comprise a cantilevered beam (24) formed in a sleeve (20) coaxial with the load bearing members (10, 11). Alternatively, an extension (25) of the probe (18) may deflect laterally at a midpoint under overload conditions. Alternatively, the probe (18) may form an impression in an indicator member (30) under overload conditions.
Abstract:
Method for manufacturing a photovoltaic module (1) comprising: a) providing an electrically conductive substrate, the substrate being provided with a predetermined electrical pattern; b) depositing a solder paste (7) onto the electrically conductive substrate at pre-defined interconnection locations; c) placing a first encapsulant layer (3) provided with a pattern of openings onto the electrically conductive substrate, the pattern of openings corresponding with the locations of the solder paste (7); d) placing back-contact solar cells (4) on the first encapsulant layer so as to have a match of the electrical pattern of the back-contact solar cells with the electrical pattern of the electrically conductive substrate; e) placing a second encapsulant layer (5) on the back-contact solar cells (4), and placing a glass layer (6) on the second encapsulant layer (5); f) applying heat and pressure to the components (2, 3, 4, 5, 6, 7) to cause the encapsulant materials to flow and form a monolithic photovoltaic module, characterised by local application of at the interconnection locations utilizing a laser to couple its energy locally into the solar cell from the side of the glass layer, so as to cause the solder paste to reflow between each interconnection location and its respective matching connection location on the back-contact solar cell for establishing electrical interconnection between the back-contact solar cells and the electrically conductive substrate.
Abstract:
Fastening mechanisms for releasably locking a tether are provided. The mechanisms find application with orthopedic internal-fixation implants and make the implants more reliable and their implantation less invasive. A method for releasably locking a tether comprises advancing the tether through a tether aperture in a clamp body. The tether enters the tether aperture in a first plane and exits in a second plane generally transverse to the first plane. Positioning a fastener element in a fastener aperture in the clamp body captures the tether between the clamp body and the fastener element thereby releasably locking the tether in position relative to the clamp body.
Abstract:
A landing gear for an aircraft comprises: a shock absorber strut (1) with upper and lower telescoping portions (2, 3), the upper portion (2) being connectable to the airframe of the aircraft; an arm (4) to extend fore and aft relative to the aircraft and carrying a landing wheel, (7, 71), and pivotally connected by a main pivot (5) to the lower portion (3) of the shock absorber strut; and a load reacting unit (9) connected between the arm (4) and the shock absorber strut (1) for reacting to load applied between the arm and shock absorber strut on landing, and an indicator (60) for monitoring the load applied to the load reacting unit (9) on landing. The load reacting unit (9) may be connected between a forward end of the arm (4) and the upper portion (2) of the shock absorber strut to make the gear act as a semi-levered landing gear. Alternatively, the load reacting unit (9) may be connected between the arm (4) and the lower portion (3) of the shock absorber strut to act as a pitch trimmer. The arm (4) may comprise a bogie beam with fore and aft landing wheels (7, 71) with the main pivot (5) therebetween. The load reacting unit (9) preferably comprises a fluid pressure unit and the indicator (60) comprises a mechanical indicator that operates at a predetermined pressure threshold.
Abstract:
Methods, apparatus and systems for constraining spinous processes to elastically limit flexion of two or more adjacent spinal segments rely on placing a tether structure over at least three adjacent vertebral bodies or two adjacent vertebral bodies and the sacrum. The tether structures may be continuous, for example in the form of a continuous loop, or may be discontinuous, for example in the form of a loop or elongate element having at least two anchor structures for securing in bone.