Abstract:
Multiple images are captured where the exposure times for some of the images overlap and the images are spatially overlapped. Charge packets are transferred from one or more portions of pixels after particular integration periods, thereby enabling the portion or portions of pixels to begin another integration period while one or more other portions of pixels continue to integrate charge. Charge packets may be binned during readout of the images from the image sensor. Comparison of two or more images having different lengths of overlapping or non-overlapping exposure periods provides motion information. The multiple images can then be aligned to compensate for motion between the images and assembled into a combined image with an improved signal to noise ratio and reduced motion blur.
Abstract:
Multiple images are captured where the exposure times for some of the images overlap and the images are spatially overlapped. Charge packets are transferred from one or more portions of pixels after particular integration periods, thereby enabling the portion or portions of pixels to begin another integration period while one or more other portions of pixels continue to integrate charge. Charge packets may be binned during readout of the images from the image sensor. Comparison of two or more images having different lengths of overlapping or non- overlapping exposure periods provides motion information. The multiple images can then be aligned to compensate for motion between the images and assembled into a combined image with an improved signal to noise ratio and reduced motion blur.
Abstract:
A method for producing a digital image from pixel signals captured by an image sensor array is disclosed. The method includes: providing an image sensor array having at least two groups of pixels wherein the pixels of each group are uniformly distributed over the sensor; exposing the image sensor array to scene light and reading pixel charge from only the first group of pixels to produce a first set of pixel signals; after producing the first set of pixel signals, exposing the image sensor array, and then reading pixel charge from the second group of pixels and reading again pixels from the first group to produce a second set of pixel signals; and using the first and second sets of pixel signals to produce the digital image.
Abstract:
A unit cell (20) is disclosed that has an input node for coupling to an output of a detector (D1) of electromagnetic radiation, such as IR or visible radiation. The unit cell includes a first capacitor (CintA) switchably coupled to the input node for receiving a charge signal from the detector, and for integrating the charge signal during a first integration period, as well as a second capacitor (CintB) switchably coupled to the input node for integrating the charge signal during a second integration period. The unit cell further includes an output multiplexer (32, 34) for selectively coupling the first capacitor and the second capacitor to an output signal line (38) during respective charge signal readout periods. In the preferred embodiment a duration of the first integration period is one of greater than or less than the second integration period, and the first integration period is one of non-overlapping or overlapping with the second integration period, and vice versa. The first integration period can be interleaved with the second integration period, or vice versa.
Abstract:
A multimode interline charge coupled device having an array of light sensitive pixels, each configured to accumulate photocharge responsive to light incident on the pixel, and a controller configured to allocate a first portion of the pixels to accumulate photocharge responsive to light from a scene during a plurality of exposure periods and allocate a second portion of the pixels to store photocharge accumulated by pixels in the first portion to provide a plurality of images of the scene greater than two.
Abstract:
The invention proposes a method for controlling a capture of a plurality of images for obtaining a High Dynamic Range, HDR, image. The method comprises storing a main set of selectable exposure times and a plurality of candidate reduced sets being respective subsets of the main set, controlling a capture of calibration images at respectively each exposure time of the main set, for each candidate reduced set, selecting the calibration images captured with the exposure times of the candidate reduced set and computing a score value depending on intensities of the selected calibration images, selecting a candidate reduced set from among the plurality of the candidate reduced sets on the basis of the computed score values of all candidate reduced sets, and controlling the capture of the plurality of images at respectively each exposure time of the selected candidate reduced set for obtaining the HDR image.
Abstract:
Systems, methods, and media for extracting information and a display image from two captured images are provided, in some embodiments, systems for extracting information and a display image from two captured images are provided, the systems comprising: a rolling shutter sensor; and a hardware processor coupled to the rolling shutter sensor that is configured to: cause the roiling shutter sensor to capture two captured images; receive the two captured images; and extract the information, and the display image from the two captured images, wherein the information is represented in the captured images as a flicker pattern.