Abstract:
Methods, devices, and computer program products for image sensors with overlapped exposure brackets supporting multiple short exposures are described. In one aspect, a method of capturing an image is disclosed. The method includes capturing, on a first subset of pixels on an image sensor, a first image with a first exposure length. The method further includes simultaneously capturing, on a second subset of pixels on an image sensor, a plurality of images with a second exposure length, wherein the second exposure length is shorter than the first exposure length. The method further includes combining the plurality of images with a second exposure length into a second image. Finally, the method includes combining the first image and the second image.
Abstract:
A method for measuring three-dimensional coordinates of an object surface with a line scanner, the line scanner including a projector and a camera, the projector projecting onto the object surface a first line of light at a first time and a second line of light at a second time, the integrated energy of the second line of light different than the first line of light, the camera capturing the reflections of the first line of light and the second line of light, a processor processing the collected data after discarding portions of the image that are saturated or dominated by electrical noise, and determining three-dimensional coordinates of the object surface based at least in part on the processed data and on a baseline distance.
Abstract:
In some embodiments, an electronic device, comprises an image capture device and logic to receive a first set of input frames from an image capture device, analyze the first set of input frames to determine whether multi-image processing is to be implemented, and in response to a determination that multi-image processing is to be implemented, determine a number of image frames required to capture a dynamic range of a scene, capture at least the number of image frames, align the number of images and merge the number of images into a merged image. Other embodiments may be described.
Abstract:
This disclosure describes techniques for producing high dynamic range images by applying a variable weighting factor to a sample prior to combining the sample with another sample. In one example, a method includes sampling a first pixel cell signal at a first time to produce a first sample, sampling a second pixel cell signal at a second time to produce a second sample, applying a variable weighting factor to the second sample, wherein the variable weighting factor is defined based on a function, and combining the first sample and the weighted second sample.
Abstract:
Systems and methods for extending the dynamic range of imaging systems, and more particularly fluorescence or luminescence imaging systems, having low optical background, and a linear detector response. Images of a sample at each of a set of exposure times are acquired, a system-level dark estimate for each exposure time is subtracted from each image to form dark-corrected images, and the different exposures (dark-corrected images) are merged into a wider dynamic-range image. Typically merging is performed on a pixel-by pixel basis.
Abstract:
Certain cameras and systems described herein produce enhanced dynamic range still or video images. The images can also have controlled or reduced motion artifacts. Moreover, the cameras and systems in some cases allow the dynamic range and/or motion artifacts to be tuned to achieve a desired cinematic effect.