Abstract:
본 개시는 4G 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 통신 시스템을 IoT 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스 (예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 본 명세서의 실시예에 따른 무선 통신 시스템에서 송신 포인트 선택 방법은, 적어도 하나의 수신 포인트에 기반하여 적어도 하나의 송신 포인트를 포함하는 송신 포인트 그룹을 설정하고, 상기 송신 포인트 그룹에서 상기 적어도 하나의 송신 포인트에 대한 우선 순위를 설정하여, 송신 포인트를 선택하는 단계를 포함한다. 본 연구는 미래창조과학부 '범부처 Giga KOREA 사업'의 지원을 받아 수행하였다.
Abstract:
An apparatus is configured to be employed within a base station. The apparatus comprises baseband circuitry which includes a radio frequency (RF) interface and one or more processors. The one or more processors are configured to generate control information, the control information including a configured number of ports; receive a plurality of sounding reference signals (SRS) via the RF interface from a user equipment (UE) device, wherein each of the plurality of SRS is associated with one of the one or more precoders; and generate a ranking of a the one or more precoders based on the received plurality of SRS, wherein the plurality of SRS are associated with the one or more precoders.
Abstract:
Wireless communications systems and methods related to over-the-air uplink-downlink (UL-DL) reciprocity calibration. A central unit transmits downlink (DL) calibration reference signal (RS) and a calibration request. The central unit receives, in response to the calibration request, a first uplink (UL) calibration RS and a first DL channel estimate associated with a first transmission point (TP) and a first wireless communication device. The central unit transmits a DL coordinated multipoint (CoMP) joint transmission signal according to an uplink-downlink (UL-DL) reciprocity calibration. The UL-DL reciprocity calibration is based on at least a first UL channel estimate based on the first UL calibration RS, the first DL channel estimate, a second UL channel estimate associated with a second TP and the first wireless communication device, and a second DL channel estimate associated with the second TP and the first wireless communication device.
Abstract:
In some aspects, a wireless sensor device includes a voltage controlled oscillator. The voltage controlled oscillator includes a first inverter, a second inverter, and a transformer connected between the first and second inverters. The first inverter includes a first inverter input node and a first inverter output node. The second inverter includes a second inverter input node and a second inverter output node. The transformer includes a primary winding portion, a first secondary winding portion, and a second secondary winding portion. The primary winding portion is connected between the first inverter output node and the second inverter output node and is inductively coupled to the first and second secondary winding portions. The first secondary winding portion is connected between the primary winding portion and the first inverter input node. The second secondary winding portion is connected between the primary winding portion and the second inverter input node.
Abstract:
Systems and methods are disclosed herein to provide communication test systems for the mobility testing of multi-user multiple-input multiple-output (MU-MIMO) radio frequency wireless data communication devices, systems and networks. In accordance with one or more embodiments, a test system containing an MU-MIMO traffic generator and analyzer is disclosed that includes a mobility effects scheduler operative in conjunction with a channel impairment simulator to perform tests related to mobile MU-MIMO devices such as wireless clients and terminals. Such a test system may offer improved capabilities, such as flexible measurements of mobility performance, more accurate assessments of MU-MIMO wireless channel utilization and data throughput, measurements on MU-MIMO devices under mobility stress, and automated measurements of MU-MIMO mobility testing.