Abstract:
Backscatter communication includes receiving electromagnetic energy from a base station and encoding first data and second data. The first data is encoded at a first frequency by adjusting a radar cross-section of a device to modulate the electromagnetic energy reflected back to the base station. The second data is encoded at a second frequency by limiting the adjusting of the plurality of radar cross-sections to either a first subset or a second subset of the plurality of radar cross-sections for a length of time. The second frequency is lower than the first frequency.
Abstract:
An embodiment of an eye-mountable device includes an optical lens; an accommodation actuator to provide vision accommodation for the optical lens; a controller including an accommodation logic to select one of a plurality of vision accommodation states for the device, the plurality of vision accommodation states including at least a failsafe focal distance; and a failsafe subsystem including a system health detector, the system health detector to monitor for one or more operational indicators for the device, wherein the failsafe subsystem is to cause the device to transition to a failsafe mode upon the failsafe subsystem identifying a failure condition for the device, the failsafe mode includes setting the vision accommodation state to be the failsafe focal distance.
Abstract:
An eye-mountable device includes an enclosure material, a capacitive sensor system, and a controller. The enclosure material has a concave surface and a convex surface. The concave surface is configured to be removeably mounted over a cornea and the convex surface is configured to be compatible with eyelid motion when the concave surface is so mounted. The capacitive sensor system is disposed within the enclosure material. The capacitive sensor system has at least one capacitance value that varies with changes in a gazing direction of the cornea. The controller is disposed within the enclosure material and electrically connected to the capacitive sensor system. The controller is configured to measure the capacitance value of the capacitive sensor system to detect the changes in the gazing direction.
Abstract:
A method of capacitive gaze detection for accommodation includes monitoring at least one capacitance value of a capacitive sensor system disposed within a contact lens. The at least one capacitance value varies in response to changes in a gazing direction of a cornea upon which the contact lens is removeably mounted. The changes in the gazing direction of the cornea are detected in real-time based upon changes in the at least one capacitance value. An accommodation actuator disposed within the contact lens is manipulated to automatically change an optical power of the contact lens in response to detecting changes in the gazing direction.
Abstract:
A Head Mounted Display ("HMD") includes a display module, an optical combiner, control circuitry, and a lens. The display module generates image light and the optical combiner is for combining the image light with external scene light. The lens is positioned to receive the image light. The lens is capable of dynamically changing at least one lens property of the lens. The control circuitry controls the lens to dynamically change at least one lens property of the lens.
Abstract:
An eyepiece for a head wearable display includes a light guide component for guiding display light received at a peripheral location offset from a viewing region and emitting the display light along an eye-ward direction in the viewing region. The light guide component includes an input surface oriented to receive the display light into the light guide component, an eye-ward facing surface having a reflection portion and a viewing portion, a folding surface oriented to reflect the display light received through the input surface to the reflection portion of the eye-ward facing surface, and a first interface surface oriented to receive the display light reflected from the reflection portion of the eye-ward facing surface. A partially reflective layer is disposed on the first interface surface in the viewing region to reflect the display light along the eye-ward direction through viewing portion of the eye-ward facing surface.
Abstract:
A tileable display panel includes a screen layer, an illumination layer and a display layer. The screen layer is for displaying a unified image to a viewer. The illumination layer includes at least one light source emitting lamp light into a diffusing region of the illumination layer. The illumination layer also includes a plurality of emission apertures that are each configured to emit the lamp light from the diffusing region in a divergent projection beam. The display layer is disposed between the screen layer and the illumination layer. The display layer includes a plurality of pixelets corresponding to the plurality of emission apertures. The pixelets in the plurality of pixelets are positioned to be illuminated by the divergent projection beams from the corresponding emission apertures.
Abstract:
A display including a screen layer for displaying a unified image to a viewer on a viewing side of the screen layer that is opposite a backside of the screen layer, and an illumi-nation layer having an array of light sources. Each light source in the array is configured to emit a divergent projection beam having a limited angular spread. A display layer is disposed between the screen layer and the illumination layer, and includes a matrix of pixlets, a spacing region disposed between the pixlets in the matrix, wherein the array of light sources are posi-tioned to emit the divergent projection beams having limited angular spread to project sub-images displayed by the pixlets as magnified sub-images on the backside of the screen layer, the magnified sub-images to combine to form a substantially seamless unified image, and one or more components positioned on the display layer in the spacing region.
Abstract:
Embodiments are described of a light guide including a proximal end, a distal end, a front surface and a back surface, an ambient input region on the front surface near the distal end, and an output region on the back surface near the distal end. A beamsplitter having a plurality of faces has one face optically coupled to the proximal end of the light guide, and a display is optically coupled to another face of the beamsplitter. A projector assembly is optically coupled to a face of the beamsplitter opposite the beamsplitter face that is optically coupled to the light guide. A reflecting element having optical power is positioned at the distal end of the light guide, and a distal optical element is positioned in the light guide near the distal end.
Abstract:
A method for automated assignment of a staging pad to an unmanned aerial vehicle (UAV) includes: launching the UAV from a launch location; tracking a drift of the UAV from the launch location; determining a subsequent position of the UAV after the launching based upon geofiducial navigation; calculating an estimated position of the launch location by offsetting the subsequent position by the drift; attempting to match the estimated position to an available staging pad of a plurality of staging pads; and assigning the UAV to the available staging pad when the estimated position successfully matches to the available staging pad.