Abstract:
A system and method for achieving authorization in confidential group communications in terms of an ordered list of data blocks representing a tamper-resistant chronological account of group membership updates. This method permits ad-hoc and decentralized group definition, dynamic and decentralized membership updates, open sharing, tamper resistance, and tracking of membership history. There are many applications of these techniques. One such application is enabling end-to-end encryption of instant messaging, content sharing, and streamed media.
Abstract:
An intermediary network device receives a request for a secure communication session between an endpoint server and an endpoint client through the network device. The secure session between the endpoint server and the endpoint client is divided into a first session and a second session. The first session is between the endpoint server and the network device. The second session is between the network device and the endpoint client. The network device receives a first session ticket from the endpoint server. A session state of a proxy client in the first session, including the first session ticket, is determined. The network device also determines a session state of a proxy server in the second session. The combination of the session state of the proxy client, including the first session ticket, and the session state of the proxy server are encapsulated as part of a second session ticket.
Abstract:
Systems and methods for connecting a device to one of a plurality of processing hosts. A virtual interface card (VIC) adapter learns the number and location of the hosts and an identification of the device; receives a mapping of the device to a selected host where in the host is selected from the plurality of hosts; and dynamically builds an interface that connects the device to the selected host.
Abstract:
A video conference endpoint detects faces at associated face positions in video frames capturing a scene. The endpoint frames the video frames to a view of the scene encompassing all of the detected faces. The endpoint detects that a previously detected face is no longer detected. In response, a timeout period is started and independently of detecting faces, motion is detected across the view. It is determined if any detected motion (i) coincides with the face position of the previously detected face that is no longer detected, and (ii) occurs before the timeout period expires. If conditions (i) and (ii) are met, the endpoint restarts the timeout period and repeats the independently detecting motion and the determining. Otherwise, the endpoint reframes the view to encompass the remaining detected faces.
Abstract:
A web browser executes on a device that has controllable operational features, such as sensor, actuator, and process-related features, and that is connected to other devices via a network. The web browser receives a HyperText Markup Language (HTML) document including HTML device tags. Each of the HTML device tags includes a command configured to control a corresponding one of the operational features of the device. The web browser determines, based on each HTML device tag, the command therein to control the corresponding operational feature. The web browser issues the determined command to the corresponding operational feature so as to control the operational feature.
Abstract:
An authentication request is generated when a user of a client device attempts to initiate a user session with an application managed by a service provider. An authentication response is generated based on credentials received from the user. The authentication response includes an assertion on behalf of the user. A delivery resource locator for the assertion is rewritten to a resource locator of a proxy in order to redirect the assertion to the proxy. The authentication response is sent to the client device together with the resource locator of the proxy in order to cause the client device to send the assertion to the proxy that decodes the re-written resource locator and sends the assertion to the service provider.
Abstract:
A network includes multiple routing arcs for routing network traffic to a destination. Each arc comprising nodes connected in sequence by reversible links oriented away from a node initially holding a cursor toward one of first and second edge nodes through which the network traffic exits the arc. Each node includes a network device. The nodes in the arc detect a first failure in the arc. Responsive to the detecting the first failure, the nodes exchange first management frames over a data plane within the arc in order to transfer the cursor from the node initially holding the cursor to a first node proximate the first failure and reverse links in the arc as appropriate so that the network traffic in the arc is directed away from the first failure toward the first edge node of the arc through which the network traffic is able to exit the arc.
Abstract:
Techniques are presented herein to set power levels for multiple Raman pump wavelengths in a distributed Raman amplification configuration. A first receive power measurement is obtained at a second node with a controlled optical source at a first node turned on and with a plurality of Raman pump lasers at different wavelengths at the second node turned off. A second receive power measurement is obtained at the second node with the controlled optical source at the first node turned on and the plurality of Raman pump lasers turned on to respective reference power levels to inject optical Raman pump power at a corresponding plurality of wavelengths into the optical fiber span. Based on a target Raman gain and a target Raman gain tilt, respective ratios of a total power are obtained, each ratio to be used for a corresponding one of the plurality of Raman pump lasers.
Abstract:
Presented herein are techniques for use in a network environment that includes one or more service zones, each service zone including at least one instance of an in-line application service to be applied to network traffic and one or more routers to direct network traffic to the at least one service, and a route target being assigned to a unique service zone to serve as a community value for route import and export between routers of other service zones, destination networks or source networks via a control protocol. An edge router in each service zone or destination network advertises routes by its destination network prefix tagged with its route target. A service chain is created by importing and exporting of destination network prefixes by way of route targets at edge routers of the service zones or source networks.
Abstract:
Techniques are provided to load balance point of presence traffic for a group of network devices, such as switches (3,4-1), that are configured to support network connectivity in a wired network for client devices (2) that roam between wireless access points (11 -x, 12 - 1, 12 -y) served by the respective switches (3,4-1). The point of presence traffic may tend to be allocated to a particular switch (1-2) due to network topology, whereby the switch may be located at a building entrance and therefore receive the majority of new association requests for mobile devices entering the building. Load is monitored by each switch (3,4-1) and load information is exchanged (15,16) between the switches (3,4-1). Requests and responses are exchanged between the switches such that point of presence responsibility may be transferred to switches with a lighter load.