Abstract:
There is disclosed a method of manufacturing a coining die comprising the steps of: forming a blank billet; polishing the blank billet by moving it in an abrasive medium; pressing the polished blank billet with a working punch to form a coining die; and polishing the coining die by moving it in an abrasive medium. There is also disclosed an apparatus for the same.
Abstract:
Die Erfindung betrifft ein Verfahren zum Konditionieren der Oberfläche gehärteter korrosionsgeschützter Bauteile aus Stahlblech, wobei das Stahlblech ein mit einer metallischen Beschichtung überzogenes Stahlblech ist und zum Härten aufgeheizt und abschreckgehärtet wird und nach dem Härten durch das Aufheizen auf der Korrosionsschutzbeschichtung vorhandene Oxide entfernt werden, wobei das Bauteil zur Konditionierung der Oberfläche des metallischen Überzuges bzw. der Korrosionsschutzschicht einem Gleitschleifen unterworfen wird.
Abstract:
A system for magnetorheological finishing of a substrate. A spherical wheel meant for carrying a magnetorheological finishing fluid houses a variable-field permanent magnet system having north and south iron pole pieces separated by primary and secondary gaps with a cylindrical cavity bored through the center. A cylindrical permanent magnet magnetized normal to the cylinder axis is rotatably disposed in the cavity. An actuator allows rotation of the permanent magnet to any angle, which rotation changes the distribution of flux in the magnetic circuit through the pole pieces. Thus, one can control field intensity in the gaps by positioning the permanent magnet at whatever angle provides the required field strength. Because the field also passes above the pole pieces, defining a fringing field outside the wheel surface, the variable field extends through a layer of MR fluid on the wheel, thus varying the stiffness of the MR fluid as may be desired for finishing control.
Abstract:
An apparatus (1) for polishing cavities in mechanical components (4), characterized in that said apparatus (1) comprises a supporting framework (2) supporting a working plane (3) thereon are housed the mechanical workpieces (4) to be subjected to the polishing process, said mechanical workpieces (4) being clamped to said working plane (3) by clamping means (5), said apparatus further comprising vibration generating means (6) cooperating with resilient components (7) adapted to transmit a vibration motion and amplify the action of said vibrating means (6), said apparatus (1) comprising furthermore a closed loop distributing system for distributing a mixture (8) containing a polishing and buffing cleansing material and a micro-abrading material, said mixture (8) being fed within said mechanical workpieces (4) together with metal bodies (9) having a ball shape and a different size and mass, adapted to move and stir said mixture (8) against the inner walls of the cavity of said mechanical workpieces (4) being processed.
Abstract:
A method for finishing a surface of a metal component is carried out in a receptacle containing a quantity of non-abrasive media. The component is at least partially immersed in the media and a quantity of active finishing chemistry is supplied. The chemistry forms a relatively soft conversion coating on the surface. By inducing high energy relative movement between the surface and the media the coating can be continuously removed. The method may be carried out in a drag finishing machine.
Abstract:
Method and device for processing a surface (5) of a diamond (1) with a mechanical part (3) which is moved in relation to the surface (5) of the diamond (1), whereby unbound diamond grains (2) are provided in between the mechanical part (3) and the surface (5) of the diamond (1), whereby the mechanical part (3) subjects the diamond grains (2) to a rolling motion over the surface (5) of the diamond (1), such that the diamond grains (2) move in relation to the mechanical part (3) and the surface (5) of the diamond (1), whereby the mechanical part (3) makes a mechanical contact with the surface (5) of the diamond (1) via the diamond grains (2), whereby this mechanical contact represents a contact length (8) over which the diamond grains (2) roll on the surface (5) of the diamond (1), mainly according to the direction of the relative motion of the mechanical part (3) in relation to the surface (5) of the diamond (1) and, whereby the diamond grains (2), with the support of the mechanical part (3), press themselves in the surface (5) of the diamond (1) while rolling, as a result of which microscopic fissures (6) are created in the latter surface (5) which then gradually crumbles off.
Abstract:
The present invention is directed to sonic-assisted systems mid methods of processing of substrates utilizing a sonic-treated liquid. In one embodiment, the sonic-treated liquid can be created by subjecting a desired processing liquid to sonic energy generated by a first sonic energy source prior to being applied So the substrate, The sonic-treated liquid is applied to the substrate where a second source of sonic energy applies sonic energy to the substrate. The sonic-treated liquid can be used as the coupling fluid between the second source of sonic energy and the substrate.
Abstract:
Disclosed herein is a new improved large planetary gear system used on the input stage of wind turbine power generators. This improved planetary gear system reduces or eliminates lubricant debris traditionally generated from the gear teeth, thereby eliminating an initiating source for bearing failure. To achieve these results, some and preferably all of the gear teeth (4) within the planetary gear system (1, 2, 3) are superfinished using chemically accelerated vibratory finishing to a surface roughness of approximately 0.25 micron or less. Several objects and advantages of the invention are to provide a gearbox with reduced metal debris, improved bearing life, reduced wear, reduced vibro-frictional noise, improved contact fatigue, improved fretting resistance, improved lubrication, to simplify the run-in process, and to enhance the durability and efficiency of the gearbox.