Abstract:
A thermoplastic vulcanizate composition includes (a) a crystalline thermoplastic polyolefin comprising alpha-olefin monomers having from 2 to 5 carbon atoms, (b) a rubber block interpolymer comprising a first block and a second block having differing chemical or physical properties from the first block, the first block is derived from ethylene, a first alpha-olefin monomer having from 3 to 10 carbon atoms, and a first diene monomer having from 2 to 25 carbon atoms, the second block is derived from ethylene, a second alpha-olefin monomer having from 3 to 10 carbon atoms, and optionally a second diene monomer having from 2 to 25 carbon atoms, and an amount of the block interpolymer in the composition being greater than an amount of the thermoplastic polyolefin in the composition, and (c) a curative system.
Abstract:
A process to form a rheology modified composition, the process comprising applying radiation, and optionally heat, to a composition that comprises at least the following component: a) an olefin-based polymer comprising a total unsaturation ≥ 0.20 /1000C; and wherein the radiation is applied using an electron beam (e-beam) at a dosage selected from 0.1 MRad to 1.5 MRad; and wherein component a is selected from a telechelic polyolefin of the formula A1L1L2A2, an unsaturated polyolefin of the formula A1L1, or an ethylene/alpha-olefin interpolymer. A process to form a rheology modified composition, the process comprising applying heat, and optionally radiation, to a composition that comprises at least the following components: a) an olefin-based polymer, as described above, comprising a total unsaturation ≥ 0.20 /1000C; b) from 1.0 to 100 ppm of a peroxide, based on the weight of the composition.
Abstract:
A composition comprising the following: a) at least one ethylene/alpha-olefin multi-block interpolymer that comprises soft segments (SS) and hard segments (HS), and wherein the interpolymer comprises the following properties: i) a melt index (I2) ≥ 30 dg/min, ii) a molar ratio of "the alpha-olefin in the SS" to "the alpha-olefin in the HS" ≥ 18, iii) a weight ratio of the SS to the HS ≤ 12.0; at least one tackifier and/or at least one oil.
Abstract:
Embodiments relate to organometallic compositions that are useful for chain transfer during olefin polymerization. Such compositions are chain transfer agents comprising an organoaluminum compound of the formula Al(CH 2 CH(Y 2 )A 2 ) 3 and an organozinc compound of the formula Zn(CH 2 CH(Y 2 )A 2 ) 2 .
Abstract:
The present disclosure relates to unsaturated polyolefins and processes for preparing the same. The present disclosure further relates to curable formulations comprising the unsaturated polyolefins that show improved crosslinking.
Abstract:
A process to form coated polymer particles comprising polymer particles formed from a polymer composition comprising an olefin-based polymer, and a coating formed from a coating composition comprising an aqueous metal acid dispersion and an aqueous polysiloxane emulsion, said process comprising the following: mixing together the aqueous metal acid dispersion and the aqueous polysiloxane emulsion to form a dispersion/emulsion mixture; applying the dispersion/emulsion mixture to a portion of the surfaces of the polymer particles to form wet-coated polymer particles; drying the wet-coated polymer particles to form the coated polymer particles. The aqueous metal acid dispersion and the aqueous polysiloxane emulsion may also be applied, individually, in separate steps.
Abstract:
A method to determine the weight percent of an "amorphous" fraction in an olefin-based polymer composition, comprising one or more olefin-based polymers; said method comprising the following steps: a) dissolving the olefin-based polymer composition in an organic solvent to form a polymer solution; b) injecting at least a portion of the polymer solution onto a support material, and wherein the support material has a Co-crystallization Index (CI) value from 0.70 to 1.20; c) cooling the support material at a rate greater than, or equal to, 0.2C/min; d) increasing the temperature of the support material to elute the polymers of the olefin-based polymer composition; e) generating a chromatogram; f) determining the peak area of the first elution from its lower integration limit to its upper integration limit; g) calculating the "amorphous" fraction" based on the following Equation A below: wt% "amorphous" fraction = PA amorphous /PA total x100 (Eqn. A); wherein PA amorp = peak area of the first elution, and PAtotal#191 = total peak area of the polymers of the olefin-based polymer composition.
Abstract:
A composition comprising the following components: A) propylene/ethylene copolymer that has a density ≤ 0.880 g/cc, and a MWD(conv) from 2.00 to 3.00 and a melt viscosity (177C) ≤ 80,000 mPa*s; B) olefin multi-block copolymer that has a density ≤ 0.890 g/cc and a melt index (I2) ≥ 0.5 g/10 min.
Abstract:
The present disclosure is directed to a silicon-terminated organo-metal composition comprising a compound of formula (I). Embodiments relate to a process for preparing the silicon-terminated organo-metal composition comprising the compound of formula (I), the process comprising combining starting materials comprising (A) a vinyl-terminated silicon-based compound, (B) a chain shuttling agent, (C) a procatalyst, and (D) an activator, thereby obtaining a product comprising the silicon-terminated organo-metal composition. In further embodiments, the starting materials of the process may further comprise (E) a solvent and/or (F) a scavenger.
Abstract:
A method to produce a tile comprising at least the following layered sections: a wear layered section, a decor layered section and a base layered section; and wherein the wear layered section comprises the following: A) a compositional layer A formed from a composition A comprising at least one olefin-based polymer; wherein the decor layered section comprises the following: B1) a compositional layer B1 formed from a composition B1 comprising a propylene-based polymer; B2) a compositional layer B2 formed from a composition B2 comprising an olefin-based polymer; wherein the base layered section comprises the following: C) a compositional layer C formed from a composition C comprising an olefin- based polymer; wherein the method comprises the following step(s): i) heat laminating compositional layer A to compositional layer B1, at a temperature T1 ≤ 140°C; and wherein, for a continuous production of the tile, T1 is the temperature at the surface of the compositional layer with the highest, or equivalent, surface temperature; and for a batch production of the tile, T1 is the interfacial temperature between the two compositional layers; ii) heat laminating compositional layer B2 to compositional layer C, at a interfacial temperature T2 ≤ 140°C; and wherein, for a continuous production of the tile, T2 is the temperature at the surface of the compositional layer with the highest, or equivalent, surface temperature; and for a batch production of the tile, T2 is the interfacial temperature between the two compositional layers.