Abstract:
Some demonstrative embodiments include devices, systems and methods of selecting a mobility mode of a User Equipment (UE). For example, a UE may include a Wireless Local Area Network (WLAN) transceiver; a cellular transceiver to communicate with a cellular node; an Access Network Discovery and Selection Function (ANDSF) client module to communicate with an ANDSF server; and a controller to select a WLAN mobility mode from a cellular/WLAN aggregation mode and an ANDSF mode.
Abstract:
Embodiments include apparatuses, methods, and systems to reduce handover latency in an integrated wireless local area network (WLAN) and wireless cellular network. In embodiments, a user equipment (UE) may communicate with a packet data network (PDN) gateway (P-GW) via the WLAN and/or the wireless cellular network. Various embodiments may provide monitoring circuitry to monitor one or more PDN connections between the P-GW and the UE over the WLAN, determine that the UE should be in a radio resource control (RRC)-Connected mode based on the monitored one or more PDN connections, and transmit an inactivity timer reconfiguration (ITR) message to request suspension of an inactivity timer associated with the UE. The monitoring circuitry may be included in the P-GW, a WLAN gateway, the UE, and/or another component of the network.
Abstract:
An integrated WLAN/WWAN Radio Access Technology ("RAT") architecture is described, in which signaling used to control the integration of the WLAN/WWAN architecture is performed over the Packet Data Convergence Protocol ("PDCP") layer, and/or at other layers (e.g., a layer between the PDCP layer and the Internet Protocol ("IP") layer). When involving the PDCP layer, non-standard PDCP packets, including variable length PDCP packets, may be used. The integrated architecture may provide a network controlled framework for performing traffic steering and radio resource management.
Abstract:
An integrated WLAN/WWAN architecture is described, in which signaling used to control the integration of the WLAN/WWAN architecture is performed over the Radio Resource Control ("RRC") plane. The integrated architecture may provide a network-controlled framework for performing traffic steering and radio resource management. Additionally, according to the disclosure provided herein, the integrated architecture may interwork with legacy systems (e.g., architectures that do not support the integrated WLAN/WWAN architecture).
Abstract:
An integrated WLAN/WWAN Radio Access Technology (RAT) architecture is described in which signaling used to control the integration of the WLAN/WWAN architecture is performed over the Radio Resource Control (RRC) plane. The integrated architecture may provide a network-controlled framework for performing traffic steering and radio resource management.
Abstract:
A method and apparatus to manage interference in a multi-cellular network is disclosed. This approach uses downlink power control to allow a serving femto access point of a plurality of femto access points to transmit signals at a first power level to ensure a quality of service level of a service provided to a first plurality of mobile stations served by the plurality of femto access points. This approach also uses the downlink power control to adjust a power level of the signals transmitted by a serving femto access point of the plurality of the femto access points to manage interference caused by the serving femto access point on a second plurality of mobile stations served by one or more macro base stations.