Abstract:
Methods and devices are provided for managing licenses in gaming networks. Some aspects of the invention are provided as a license manager module that operates as part of a server-based system for provisioning and configuring gaming machines. Security and authentication techniques are provided to prevent unauthorized gaming software usage. Such gaming software may be, for example, downloaded to gaming machines in the network under the control of a gaming establishment's game management server that is in communication with a license manager device. In preferred implementations, a gaming machine is prevented from executing software for a game of chance unless the license for that game is valid and has not expired.
Abstract:
Increased usage of network links is provided and smaller forwarding tables are required. A combination of STP and Multipath methods may be implemented in a network. Frames may be forwarded between switches not only according to MAC addresses, but also according to switch IDs and local IDs. Switch IDs do not need to be globally unique, but should be unique within a particular network. Local IDs need only be unique within a particular switch. Some preferred implementations allow frames to be delivered in order to devices requiring in-order delivery. Preferably, core switches need only learn the switch IDs of each core switch and each edge switch, and the appropriate exit port(s) corresponding to each switch. Preferably, the forwarding tables of each edge switch indicate the addresses of each device attached to that edge switch, the address of each device that is in communication with an attached device and the address of every other switch in the network.
Abstract:
Some disclosed implementations include an ultrasonic sensor stack and an acoustic resonator. The acoustic resonator may be configured to enhance ultrasonic waves transmitted by the ultrasonic sensor stack in an ultrasonic frequency range that is suitable for ultrasonic fingerprint sensors. In some examples, the acoustic resonator may include one or more low-impedance layers residing between a first higher-impedance layer and a second higher-impedance layer. Each of the one or more low-impedance layers may have a lower acoustic impedance than an acoustic impedance of the first higher-impedance layer or an acoustic impedance of the second higher-impedance layer. At least one low-impedance layer may have a thickness corresponding to a multiple of a half wavelength at a peak frequency of the acoustic resonator. The peak frequency may be within a frequency range from 1 MHz. to 20 MHz.
Abstract:
A method may include prompting a user to place their finger within a given sub-region of a fingerprint sensing surface and then obtaining the user's fingerprint. The given sub-region may be selected based on a determined or estimated probability that the given sub-region contains a latent fingerprint. As examples, the given sub-region may be determined randomly, pseudo-randomly, or based on information in a log of historical touch and/or fingerprint locations. The method may further involve tracking which sub-regions of the fingerprint sensing surface may potentially have latent fingerprints. The method may involve prompting the user to wipe one or more sub-regions of the fingerprint sensing surface when more than a predetermined fraction of the fingerprint-sensing surface has been used to obtain fingerprint images.
Abstract:
Some disclosed methods involve acquiring, via an ultrasonic sensor system, first (reference) ultrasonic signals at a first time and acquiring second ultrasonic signals via the ultrasonic sensor system at a second time. Such methods may involve determining, based at least in part on a comparison of the first ultrasonic signals and the second ultrasonic signals, whether one or more layers reside on the cover glass at the second time. If it is determined that the one or more layers reside on the cover glass at the second time, some methods may involve determining one or more signal characteristics corresponding to properties of the one or more layers and determining, based at least in part on the one or more properties, whether the one or more layers are compatible with the ultrasonic sensor system. If so, the method may involve calibrating the ultrasonic sensor system.
Abstract:
A method may involve obtaining a latent fingerprint on a surface, storing the latent fingerprint, obtaining a live fingerprint on the surface, and authenticating the live fingerprint based in part on the stored latent fingerprint and in part on previously-authenticated fingerprint data. The method may involve rejecting authentication of the live fingerprint as a potential spoof, if the live fingerprint matches the latent fingerprint under a relatively strict correlation test. The method may also involve, when the live fingerprint doesn't closely match the latent fingerprint, granting authentication of the live fingerprint if the live fingerprint matches the previously-authenticated fingerprint data under a relatively loose correlation test.
Abstract:
A system may include a fingerprint sensor system and a control system. The system may be configured to transmit an ultrasonic wave including a first frequency. The control system may be configured to obtain dermis layer image data from a target object based on reflected portions of the ultrasonic waves received by the fingerprint sensor system. The dermis layer image data may correspond to ultrasonic waves received from the target object within a time interval corresponding with the dermis layer. The reflected portions of the ultrasonic wave corresponding to the dermis layer image data may include ultrasonic waves at a second frequency that is an integer multiple of the first frequency. The control system may be configured to determine whether a magnitude of the ultrasonic waves at the second frequency exceeds a harmonic threshold and, if the magnitude exceeds the harmonic threshold, the control system may perform an authentication process.
Abstract:
This disclosure provides systems, methods and apparatus for a test probe for characterizing piezoelectric material. In one aspect, a test probe may include a conductive tip configured to apply force to the piezoelectric material and provide a charge signal representing charge generated by the piezoelectric material as the piezoelectric material experiences the force. A force sensor within the test probe may generate a force signal representing the force being applied. A piezoelectric coefficient d 33 may be determined from the charge signal and the force signal.
Abstract:
An apparatus or a system may include an ultrasonic sensor array, a radio frequency (RF) source system and a control system. Some implementations may include a light source system and/or an ultrasonic transmitter system. The control system may be capable of controlling the RF source system to emit RF radiation and of receiving signals from the ultrasonic sensor array corresponding to acoustic waves emitted from portions of a target object in response to being illuminated with the RF radiation. The control system may be capable of acquiring ultrasonic image data from the acoustic wave emissions received from the target object.