Abstract:
A method and system for providing a magnetic element that can be used in a magnetic memory is disclosed. The magnetic element includes pinned, nonmagnetic spacer, free, and heat assisted switching layers. The spacer layer resides between the pinned and free layers. The free layer resides between the spacer and heat assisted switching layers. The heat assisted switching layer improves thermal stability of the free layer when the free layer is not being switched, preferably by exchange coupling with the free layer. The free layer is switched using spin transfer when a write current is passed through the magnet element. The write current preferably also heats the magnetic element to reduce the stabilization of the free layer provided by the heat assisted switching layer. In another aspect, the magnetic element also includes a second free layer, a second, nonmagnetic spacer layer, and a second pinned layer. The heat assisted switching layer resides between the two free layers, which are magnetostatically coupled. The second spacer layer resides between the second free and second pinned layers.
Abstract:
A method and system for providing a magnetic element capable of storing multiple bits is disclosed. The method and system include providing first pinned layer, a first nonmagnetic layer, a first free layer, a connecting layer, a second pinned layer, a second nonmagetic layer and a second free layer. The first pinned layer is ferromagnetic and has a first pinned layer magnetization pinned in a first direction. The first nonmagnetic layer resides between the first pinned layer and the first free layer. The first free layer being ferromagnetic and has a first free layer magnetization. The second pinned layer is ferromagnetic and has a second pinned layer magnetization pinned in a second direction. The connecting layer resides between the second pinned layer and the first free layer. The second nonmagnetic layer resides between the second pinned layer and the second free layer. The second free layer being ferromagnetic and having a second free layer magnetization. The magnetic element is configured to allow the first free layer magnetization and the second free layer magnetization to change direction due to spin transfer when a write current is passed through the magnetic element.
Abstract:
A method and system for providing a magnetic element (100) capable of being written using spin-transfer effect while generating a high output signal and a magnetic memory using the magnetic element (100) are disclosed. The magnetic element (100) includes a first ferromagnetic pinned layer (104), a nonmagnetic spacer layer (106), a ferromagnetic free layer (108), an insulating barrier layer (110) and a second ferromagnetic pinned layer (112). The pinned layer (104) has a magnetization pinned in a first direction. The nonmagnetic spacer layer (106) is conductive and is between the first pinned layer (104) and the free layer (108). The barrier layer (110) resides between the free layer (108) and the second pinned layer (112) and is an insulator having a thickness allowing o electron tunneling through the barrier layer (110). The second pinned laye (112) has a magnetization pinned in a second direction. The magnetic element (100) is configured to allow the magnetization of the free layer (108) to change direction due to spin transfer when a write current is passed through the magnetic element (100).