Abstract:
A pump module (104) comprises a power source (128), a plurality of laser diodes (122), a controller (130) and light combining optics (124). The laser diodes each have an activated state and a deactivated state. The laser diodes receive current from the power source and output light (138) when in the activated state and do not receive current from the power source when in the deactivated state. The controller switches the plurality of laser diodes from a first power mode, in which a first subset of the laser diodes is in the activated state, to a second power mode, in which a second subset of the laser diodes is in the activated state, responsive to a power mode setting (180). The light combining optics are configured to combine the light from the activated laser diodes and output the combined light as pump energy (108). A laser system (100) comprises a pump module (104) and a gain medium (102). The pump module is configured to output pump energy (108) having a wavelength that is within a wavelength range of 874-88 lnm. The gain medium is in the path of the pump energy and is configured to absorb the pump energy and emit laser light (112) responsive to the absorbed pump energy. In one embodiment, a controller (130) switches a power level of the pump energy between first and second power levels responsive to a power mode setting (180) input from an operator.
Abstract:
Die Erfindung betrifft einen Laserkristall, der eine zum Kristallinneren konvexe Endfläche (E) aufweist, die für wenigstens eine Laserwellenlänge hochreflektiv verspiegelt (3) ist und der Laserkristall nur in einem zu dieser Endfläche (E) nahen Bereich zur Erzielung einer stimulierten Laseremission auf wenigstens einer Laser-Wellenlänge anregbar ist, nicht jedoch in einem von der konvexen Endfläche fernen Bereich.
Abstract:
Um ein bekanntes seitengepumptes optisch aktives Bauteil, das eine Längsachse aufweist, entlang der sich eine Aktivzone (1) aus einem optisch aktiven Material mit einem ersten Brechungsindex n L erstreckt, die ein stirnseitiges Auskoppelende (7) für optische Strahlung aufweist, entlang der eine Pumplichtzone (3) mit einem zweiten Brechungsindex n P verläuft, die ein Einkoppelende (6) für Pumplicht aufweist und die von einer der Aktivzone zugewandten Mantelfläche begrenzt ist, über die Pumplicht (8) in die Aktivzone (1) gelangt, im Hinblick auf einen höheren Wirkungsgrad des Pumplichts zu verbessern, und dabei gleichzeitig dessen Vorteile hinsichtlich einer geringen Beeinträchtigung der Kernzone im Bereich der Einkoppelstelle des Pumplichts und des Auftretens nicht-linearer Effekte durch hohe Absorption des Pumplichts möglichst zu vermeiden, wird erfindungsgemäss vorgeschlagen, dass die der Aktivzone zugewandte Mantelfläche der Pumplichtzone an eine Trennzone (2) angrenzt, die einen Brechungsindex n T aufweist, der kleiner ist als n P , so dass die Pumplichtzone zur Führung des Pumplichts geeignet ist, und dass mindestens über einen Teil der Strecke zwischen Einkoppelende und Auskoppelende eine allmähliche Auskopplung des Pumplichts aus der Pumplichtzone über die Trennzone in die Aktivzone erfolgt. Allmähliche Auskopplung wird beispielsweise durch eine über die Auskoppelstrecke variierende Dicke der Pumplichtzone erzielt.
Abstract:
A mount for suspending a laser medium has a cross section profile. The mount is configured to conduct heat away from the laser medium without imparting undue stress. The mount includes a laser host medium (12) having a first cross section profile. A heat sink (21) defines a bore. The bore has a second cross section profile configured to envelop the first cross section profile and further defines a generally uniform interspace between the first cross section profile and second first cross section profile. An amalgam of a mercury soluble metal (15, 18) is formed to substantially fill the interspace to support the laser host medium.
Abstract:
A laser system and method. The inventive laser includes an annular gain medium (37); a source of pump energy (13, 15, 17), and an arrangement (25, 27, 29, 31) for concentrating energy from the source on the gain medium. In a more specific implementation, a mechanism is included for rotating the gain medium (37) to effect extraction of pump energy and cooling. In the illustrative embodiment, the pump source is a diode array. Energy from the array is coupled to the medium via an array of optical fibers (25, 27, 29). The outputs of the fibers are input to a concentrator (31) that directs the pump energy onto a pump region of the medium (37). In the best mode, plural disks (30, 32, 34) of gain media are arranged in an offset manner to provide a single resonator architecture. First (46) and second (48) mirrors are added to complete the resonator. In accordance with the inventive teachings, a method for pumping and cooling a laser is taught. In the illustrative embodiment, the inventive method includes the steps of providing a gain medium; pumping energy into a region of the gain medium; moving the medium; extracting energy from the region of the medium; and cooling region of the medium.
Abstract:
Laser radiation delivered to a treatment area causes vapopzation of a substantially greater volume of tissue than the volume of residual coagulated tissue The laser radiation may have a wavelength of about 300 m to about 700 nm, may be used with a smoke suppressing irpgant, may have an average irradiance greater than about 5 k?lowatts/cm2, and may have a spot size of at least 0 05 mm2 A laparoscopic laser device, for use with an insufflated bodily cavity, may include an elongate body adapted for insertion into an insufflated bodily cavity A laser energy delivery element, at the distal end of the elongate body, may be coupleable to a source of tissue-vapopzation-capable laser energy and capable of delivepng laser energy along a laser energy path extending away from the laser energy delivery element A smoke-suppressing liquid pathway extending along the elongate body may be coupleable to a source of a smoke-suppressing liquid
Abstract:
The invention relates to a solid-state laser comprising a resonator (1) with a monolithic structure consisting of a laser medium, on which a passive Q-Switch (12) and at least one resonator mirror are directly formed, and comprising several laser diodes (22) which, as pump medium, radiate into the resonator (1) from the side. A simple and robust structure which is also highly efficient is obtained, in that the monolithic resonator (1) is held at one end in a first holding plate (31) and is held at its other end in a second holding plate (32), and in that between the first and the second holding plate (31, 32) at least one carrier ring (21) is mounted which carries several laser diodes (22) which are passively wavelength stabilized.
Abstract:
A mount for suspending a laser medium has a cross section profile. The mount is configured to conduct heat away from the laser medium without imparting undue stress. The mount includes a laser host medium (12) having a first cross section profile. A heat sink (21) defines a bore. The bore has a second cross section profile configured to envelop the first cross section profile and further defines a generally uniform interspace between the first cross section profile and second first cross section profile. An amalgam of a mercury soluble metal (15, 18) is formed to substantially fill the interspace to support the laser host medium.