Abstract:
A system for powerline networking. The system has an external data source (103), which is derived from a world wide networks of computers. A router (201) is coupled to the external data source and coupled to a first datasource connection. A powerline network switch apparatus is coupled to the first datasource connection (107). The apparatus has a second datasource connectoin, which is coupled to the first datasource connection. The apparatus also has a powerline device (311) coupled to the second datasource connection.
Abstract:
The present invention provice a device (fig. 3) for providing communication through power lines (fig. 2) comprised of multiple conductors by transmitting the data signals through a plurality of the conductors. One embodiment of the present invention comprises a transmit circuit communicatively coupled to a first conductor for applying the first voltage representing the data to the first energized conductor; the transmit circuit communicatively coupled to a second conductor for applying the second voltage representing the data to the second energized conductor; wherein the second voltage signal is opposite in polarity of the first voltage.
Abstract:
The coupler of the present invention couples data signals, such as broadband RF signals, to and from a power line. The coupler of one embodiment that is for use with overhead power lines includes a length of URD MV cable with the neutral conductor removed. Each end of the URD cable is communicatively coupled to the MV power line conductor a predetermined distance from other. The distance between the two connections points on the MV may be related to the wavelength of a carrier frequency used to communicate the data signals. The URD cable may also form part of a transformer to permit the passage of data signals while preventing the flow of the high voltage power signals through the coupler. The neutral semi-conductive jacket of the URD cable may be coupled to ground via a low frequency conductive path.
Abstract:
An adapter connectable to power outlet [103], for use with a power line communication system [105a], having electronic filter means and dedicated connectors for supporting the different kinds of services and having mechanical means for connecting the adapter to the power outlet [103].
Abstract:
The present invention provides a device for providing communications through power lines comprised of multiple conductors by transmitting the data signals through a plurality of the conductors. One embodiment of the present invention may be comprised of a transmit circuit communicatively coupled to a first energized conductor for applying a first voltage signal representing the data to the first energized conductor; the transmit circuit being communicatively coupled to a second energized conductor for applying a second voltage signal representing the data to the second energized conductor; and wherein the second voltage signal is opposite in polarity to said first voltage signal.
Abstract:
A four-port junction is substituted for a six-port junction in a frequency domain reflectometer, which reduces the parts count and therefore cost and size of the reflectometer while improving reliability. The frequency domain reflectometer can alternatively be used as an insertion loss tester. An algorithm including the Hilbert Transform is used to directly calculate the estimated reflection coefficient from the output power measured at only two output ports.
Abstract:
A method and apparatus for modifying a three-phase power distribution network in a building in order to provide data communication by using a Power Line Carrier (PLC) signal to an approximate electrical central location point of Wye-connected and Delta connected power distribution system remote from the data entry point of the building. A passive coupler device is attached to a centrally located service panel. The passive coupler receives the Power Line Carrier (PLC) signal from the remote entry point in the building and conditions the signal for entry at the service panel onto each phase of the three phase power distribution network.
Abstract:
A line state detecting apparatus provided in a balanced transmission system includes, in transmission lines comprising a pair of conductors W1, W2 connected to a transmitting portion 13, current transformers T11, T12 primary sides of which are inserted to respectives thereof in series therewith and secondary sides of which are connected in series to cancel currents or voltages of the two transformer by each other, and a detecting portion 11 for detecting currents or voltages on secondary sides of the current transformers T11, T12. By an output of the detecting portion 11, a difference of currents or voltages of the conductors W1, W2 of the transmission lines is provided and an unbalance component between the conductors W1, W2 is detected.
Abstract:
A four-port junction is substituted for a six-port junction in a frequency domain reflectometer, which reduces the parts count and therefore cost and size of the reflectometer while improving reliability. The frequency domain reflectometer can alternatively be used as an insertion loss tester. An algorithm including the Hilbert Transform is used to directly calculate the estimated reflection coefficient from the output power measured at only two output ports.
Abstract:
A calibration system is provided for calibrating frequency domain reflectometers in the field by using both the scattering parameters of the multi-port junction determined at the factory and changing the offset and gain terms used in generating a complex reflection coefficient by using internal calibrated loads so that heavy, cumbersome external calibrated transmission lines are not required. In one embodiment the internal calibrated loads include RLC circuits and in another embodiment the internal calibrated loads include attenuators. Further, retesting or recalibration does not necessitate reconnecting the cable under test, which may remain connected to the reflectometer’s test port throughout the procedure.