Abstract:
An inert material is included in the electrode assembling of a battery having a thickness which compensates for a difference in dimension of the electrode assembly when thinner electrodes are used to construct a battery having reduced capacity, to thereby be accommodated in a battery case of uniform dimension regardless of the electrical characteristics of the battery.
Abstract:
The present invention relates to compositions comprising ionic compounds surrounded by organic matrices, and methods for producing such compositions. In various embodiments, the compositions of the present invention are co- crystals of an organic compound and a salt. The organic compound forms matrices with channel structures, wherein the organic matrices interact relatively poorly with the salt, thus allowing for excellent ion mobility through the channel structures. In one embodiment, the compositions are soft-solid electrolytes, comprising ions such as lithium or sodium, which can be used in batteries or other electrochemical devices. The electrolyte compositions of the present invention exhibit relatively high ionic conductivities with a negligible activation barrier for ion migration, i.e., the compositions exhibit barrierless ion conduction. In addition, the compositions exhibit good conductivities at very low temperatures, making them useful in a variety of low temperature applications. In one embodiment, the present invention further relates to free-standing films comprising the co-crystals of the present invention, and methods for preparing such films.
Abstract:
The invention provides sulfuric acid efficiency electrolytes including a surfactant, preferably an amphoteric or a non-ionic surfactant, and/or phosphoric acid, the sulfuric acid efficiency electrolyte preferably further including at least one of a chelating agent and a crystal growth regulator, and optionally, a filler. The invention further provides sulfuric acid electrolytes including a filler, at least one chelating agent, and at least one water-soluble sulfate salt, wherein the chelating agent comprises an alkali metallated chelating agent and the water-soluble sulfate salt comprises the corresponding cation to the cation present in the alkali metallated chelating agent. The invention further provides lead sulfuric acid batteries including a positive electrode, negative electrode, and the efficiency electrolyte of the invention disposed therebetween.
Abstract:
A metal air flow battery includes an electrochemical reaction unit and an oxygen exchange unit. The electrochemical reaction unit includes an anode electrode, a cathode electrode, and an ionic conductive membrane between the anode and the cathode, an anode electrolyte, and a cathode electrolyte. The oxygen exchange unit contacts the cathode electrolyte with oxygen separate from the electrochemical reaction unit. At least one pump is provided for pumping cathode electrolyte between the electrochemical reaction unit and the oxygen exchange unit. A method for producing an electrical current is also disclosed.
Abstract:
본 발명은 금속 섬유를 이용한 전극 구조체를 갖는 전지 및 상기 전극 구조체의 제조 방법에 관한 것이다. 본 발명의 일 실시예에 따른 전극 구조체의 제조 방법은, 도전성 네트워크를 형성하는 하나 이상의 금속 섬유들을 제공하는 단계; 입자 형태의 전기적 활물질들을 포함하는 입자 조성물을 제공하는 단계; 상기 금속 섬유들과 상기 입자 조성물들을 혼합하는 단계; 및 혼합된 상기 금속 섬유들과 상기 입자 조성물들을 압착하는 단계를 포함할 수 있다.
Abstract:
The present invention generally relates to batteries and, in particular, to electrodes for use in batteries such as non-aqueous metal-air batteries, for example, lithium-air batteries, as well as in other electrochemical devices. Such devices may exhibit improved performance characteristics (e.g. power, cycle life, capacity, etc.). One aspect of the present invention is generally directed to electrodes for use in such devices containing one or more pores or channels for transport of gas and/or electrolyte therein, e.g., forming an open porous network. In certain embodiments, the electrolyte may be a gel or a polymer. In some embodiments, there may be network of such channels or pores within the electrode such that no active site within the electrode is greater than about 50 micrometers distant from a gas channel. In some embodiments, such systems may be created using electrodes containing gel or electrolyte polymers, and/or by forming electrodes having different wettabilities such that certain regions preferentially attract the electrolyte compared to other regions, thereby causing self-organization of the electrolyte within the electrode. Other aspects of the invention are generally directed to methods of making such batteries or electrochemical devices, methods of using such batteries or electrochemical devices, kits involving such batteries or electrochemical devices, or the like.
Abstract:
A non-aqueous electrolyte includes: at least one ionically conducting salt, a non-aqueous, anhydrous solvent for the ionically conductive salt, said solvent being selected to achieve a lithium transference number between 0.45 and 1.0, at least one oxide in a particulate form, said oxide being selected such that it is not soluble in said solvent and such that it is water-free.
Abstract:
The present invention relates to flexible thin film batteries on semiconducting surface or the conductive or insulating packaging surface of a semiconductor device and methods of constructing such batteries. Electrochemical devices may be glued to a semiconducting surface or the conductive or insulating packaging surface of a semiconductor device or deposited directly thereon. The invention also relates to flexible thin film batteries on flexible printed circuit boards where the electrochemical devices may also be glued or deposited on the flexible printed circuit board.