Abstract:
The present invention generally relates to batteries and, in particular, to electrodes for use in batteries such as non-aqueous metal-air batteries, for example, lithium-air batteries, as well as in other electrochemical devices. Such devices may exhibit improved performance characteristics (e.g. power, cycle life, capacity, etc.). One aspect of the present invention is generally directed to electrodes for use in such devices containing one or more pores or channels for transport of gas and/or electrolyte therein, e.g., forming an open porous network. In certain embodiments, the electrolyte may be a gel or a polymer. In some embodiments, there may be network of such channels or pores within the electrode such that no active site within the electrode is greater than about 50 micrometers distant from a gas channel. In some embodiments, such systems may be created using electrodes containing gel or electrolyte polymers, and/or by forming electrodes having different wettabilities such that certain regions preferentially attract the electrolyte compared to other regions, thereby causing self-organization of the electrolyte within the electrode. Other aspects of the invention are generally directed to methods of making such batteries or electrochemical devices, methods of using such batteries or electrochemical devices, kits involving such batteries or electrochemical devices, or the like.
Abstract:
High capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high capacity batteries particularly useful in powering devices where minimizing battery mass is important.
Abstract:
The present invention provides high capacity and high voltage Li-ion batteries that have a carbonaceous cathode and a nonaqueous electrolyte solution comprising LiF salt and an anion receptor that binds the fluoride ion. The batteries can comprise dual intercalating electrode Li ion batteries. Methods of the present invention use a cathode and electrode pair, wherein each of the electrodes reversibly intercalate ions provided by a LiF salt to make a high voltage and high specific capacity dual intercalating electrode Li-ion battery. The present methods and systems provide high-capacity batteries particularly useful in powering devices where minimizing battery mass is important.
Abstract:
Rechargeable metal-air battery, air electrodes for use in the metal-air battery, and methods to manufacture the same are provided. The battery includes a negative electrode capable of taking and releasing active metal ions, a porous positive electrode using oxygen as an electroactive material and an electrolyte configured to conduct ions between the negative and positive electrodes and comprising one or more phases, wherein at least one phase comprises a liquid that at least partially fills the pores of the positive electrode and wherein the liquid comprises an oxygen evolving catalyst (OEC). The OEC a) is soluble in the liquid of the phase that partially fills the positive electrode pores, b) is electrochemically activated at a potential above the equilibrium cell voltage and c) is capable of evolving oxygen gas by oxidizing a metal oxide discharge product produced during discharge of the rechargeable metal-air battery.