Abstract:
Described herein are novel biological circuit chemotactic converter that utilize modular components, such as genetic toggle switches and single invertase memory modules (SIMMs), for detecting and converting external inputs, such as chemoattractants, into outputs that allow for autonomous chemotaxis in cellular systems. Flexibility in these biological circuit chemotactic converter is provided by combining individual modular components, i.e., SIMMs and genetic toggle switches, together. These biological converter switches can be combined in a variety of network topologies to create network systems that regulate chemotactic responses based on the combination and nature of input signals received.
Abstract:
The present invention generally relates to nanoantenna arrays and methods of their fabrication. In particular, one aspect relates to nanoantenna arrays comprising nanostructures of predefined shapes in predefined patterns, which results in collective excitement of surface plasmons. In some embodiments the nanoantenna arrays can be used for spectroscopy and nanospectroscopy. Another aspects of the present invention relate to a method of high-throughput fabrication of nanoantenna arrays includes fabricating a reusable nanostencil for nanostensil lithography (NSL) which provides a mask to deposit materials onto virtually any support, such as flexible and thin-film stretchable supports. The nanostencil lithography methods enable high quality, high-throughput fabrication of nanostructures on conducting, non-conducting and magnetic supports. The nanostencil can be prepared by etching nanoapertures of predefined patterns into a waffer or ceramic membrane. In some embodiments, a nanoantenna array comprises plasmonic nanostructures or non-plasmonic nanostructures.
Abstract:
The invention is directed to a compound according to formula (I). The compounds of formula (I) include prodrugs, pharmaceutically acceptable salts, stereoisomer mixtures, and enantiomers thereof. The invention is also directed to a pharmaceutical composition comprising a compound according to formula (I) and a pharmaceutically acceptable carrier and to methods for treating diabetes by administering such a pharmaceutical composition alone or in combination with other therapeutic agents. The invention is also directed to inhibitors of fructose-1,6-bisphosphatase.
Abstract:
We have created novel engineered genetic counter designs and methods of use thereof that utilize DNA recombinases to provide modular systems, termed single invertase memory modules (SIMMs), for encoding memory in cells and cellular systems. Our designs are easily extended to compute to high numbers, by utilizing the >100 known recombinases to create subsequent modules. Flexibility in our engineered genetic counter designs is provided by daisy-chaining individual modular components, i.e., SIMMs together. These modular components of the engineered genetic counters can be combined in other network topologies to create circuits that perform, amongst other things, logic and memory. Our novel engineered genetic counter designs allow for the maintenance of memory and provide the ability to count between discrete states by expressing the recombinases between their cognate recognition sites.
Abstract:
Described are methods and compositions for the detection of target genes. The inventors have developed a synthetic nucleic acid sensor-effector gene circuit. In cells without a target gene, the circuit suppresses e.g., effector production, but in the presence of the target gene the suppression is subject to competition, such that the synthetic sensor is de-repressed and permits expression of the effector gene. The methods and compositions described further permit the selective expression of an effector gene in those cells expressing the target gene. In this manner, cells expressing a target gene can be selectively targeted for treatment or elimination. In certain aspects, the methods and compositions described permit the selective expression of an agent such as a therapeutic gene product, in a specifically targeted population of cells in an organism.
Abstract:
The present invention relates to the treatment and prevention of bacteria and bacterial infections. In particular, the present invention relates to engineered bacteriophages used in combination with antimicrobial agents to potentiate the antimicrobial effect and bacterial killing by the antimicrobial agent. The present invention generally relates to methods and compositions comprising engineered bacteriophages and antimicrobial agents for the treatment of bacteria, and more particularly to bacteriophages comprising agents that inhibit antibiotic resistance genes and/or cell survival genes, and/or bacteriophages comprising repressors of SOS response genes or inhibitors of antimicrobial defense genes and/or expressing an agent which increases the sensitivity of bacteria to an antimicrobial agent in combination with at least one antimicrobial agent, and their use thereof.
Abstract:
The present invention relates to a method to produce activated split-polypeptide fragments that on reconstitution immediately forms an active protein. The method relate to real-time protein complementation. Also encompassed in the invention is a method to split and produce split-fluorescent proteins in an active state which produce a fluorescent signal immediately on reconstitution. The present application also provides methods to detect nucleic acids; non-nucleic acid analytes and nucleic acid hybridization in real-time using the novel activated split-polypeptide fragments of the invention.
Abstract:
The present invention provides a method to reduce the amount of undesired growth factors in the circulating blood of a subject to prevent tumor growth and proliferation during or after a wound healing and/or other local tissue repair process on a subject, comprising extracorporeal adsorption of growth factors from blood of the subject and return of the treated blood to the subject.
Abstract:
The present invention provides engineered bacteriophages that express at least one biofilm degrading enzyme on their surface and uses thereof for degrading bacterial biofilms. The invention also provides genetically engineered bacteriophages expressing the biofilm degrading enzymes and proteins necessary for the phage to replicate in different naturally occurring biofilm producing bacteria. The phages of the invention allow a method of biofilm degradation by the use of one or only a few administration of the phage because the system using these phages is self perpetuating, and capable of degrading biofilm even when the concentration of bacteria within the biofilm is low.
Abstract:
The present invention is directed to a scraping instrument for collection of a biological sample, and a non-invasive method for obtaining nucleic acid from buccal mucosa epithelial cells using the scraping instrument. Such nucleic acid can be used for example for gene expression profiling, including to assess lung disease risk associated with airway pollutants.