Abstract:
Enhanced ion/vacancy mobility channels are descnbed for the resistive random access memory, memristor and phase change memory. Such channels provide more definitive conduction path than the more random conductive paths resulting from applied forming voltages.
Abstract:
A configurable Clos network includes leafs and spines and a switch fabric that connects the leafs and the spines. The switch fabric couples each leaf port of each leaf to at least one spine port of each spine.
Abstract:
Systems, methods, and apparatus to route optical signals are disclosed. An example apparatus to route optical signals includes a plurality of hollow metal waveguide optical switch arrays. Each of the arrays comprises a plurality of optical input ports and a plurality of optical output ports. The input ports and the output ports for a first one of the arrays are arranged in a first plane, the input ports and the output ports for a second one of the arrays are arranged in a second plane, and the plurality of arrays are stacked such that the first and second planes are adjacent. The first one of the arrays is to convey optical signals from a first communication device to a second communication device and the second one of the arrays is to convey optical signals from the second communication device to the first communication device.
Abstract:
A semiconductor structure includes a substrate, a thermally and electrically conductive mask positioned upon the substrate, and an epitaxial lateral over growth (ELOG) material positioned upon the thermally and electrically conductive mask.
Abstract:
A substrate for Surface Enhanced Raman Scattering (SERS). The substrate comprises at least one nanostructure protruding from a surface of the substrate and a SERS active metal over the at least one nanostructure, wherein the SERS active metal substantially covers the at least one nanostructure and the SERS active metal creates a textured layer on the at least one nanostructure.
Abstract:
A system employs a flexible optical media (210), two connectors (220, 240), and a mechanism such as a magnet (226) that brings the connector (220, 240) together when the connectors are close to each other. The optical media (210) is able to guide optical signals, and one connector (220) is attached to an end of the optical media (210). Each connector (210, 240) also has alignment features (224, 244) and provides paths (222, 242) for the optical signals. The alignment features (224) of each connector are shaped to mate with the alignment features (244) of the other connector and to shift the connectors (220, 240) relative to each other as the mechanism (226) pushes the connector (220, 240) together. The alignment features (224, 244) further have seated positions at which the paths (222) in one connector are aligned with the paths (242) in the other connector and separated by a free space gap (230).
Abstract:
Embodiments of the present invention are directed to beamsplitters that include optical elements to correct for beam offset. In one embodiment, a beamsplitter includes a first plate having two approximately parallel and opposing planar surfaces and a partially reflective layer coating one of the planar surfaces, and a compensator plate having two approximately parallel and opposing planar surfaces. The compensator plate is positioned so that an incident beam of light passing through the compensator plate acquires a first beam offset. Subsequently, the incident beam of light with the first beam offset passing through the first plate is split into a reflected beam and a transmitted beam by the partially reflective layer where the transmitted beam has a second beam offset that substantially cancels the first beam offset such that the transmitted beam is approximately parallel to and aligned with the incident beam.
Abstract:
A controllable optical ring resonator, a photonic system and a method of controlling an optical ring resonator employ control electrodes periodically spaced apart along a closed loop optical path of an optical waveguide. The controllable optical ring resonator includes the optical waveguide and a plurality of the periodically spaced control electrodes. The photonic system includes an input optical waveguide segment and the controllable optical ring resonator adjacent and optically coupled to the segment. The method includes providing the plurality of periodically spaced control electrodes, providing an optical signal within the optical path, and addressing one or more of the control electrodes to interact with the optical signal within the optical path.
Abstract:
Radiation emitting structures (110, 120, 130, 140, 150) that include an active radiatio emitter (111, 121, 141) and a passive photonic crystal structure (114, 134, 144, 154) surrounding the emitter are disclosed. The passive photonic crystal structure is transparent to wavelengths of electromagnetic radiation within the visible region of the electromagnetic spectrum. Also disclosed are incandescent lamps (110, 200) that include such radiation emitting structures.