Abstract:
Various constructs and methods are provided for heating a plurality of different food items to their respective desired serving temperatures in a microwave oven in about the same amount of time.
Abstract:
A container formed from a blank, a forming, tool and a method of forming a container are disclosed. The container includes features that are formed by a plurality of score lines in a marginal portion of the blank. The container has a bottom wall, a side wall, and a flange extending from the side wall. The flange has a thickness that is greater than a thickness of the blank.
Abstract:
A microwave heating package (100) comprises a dimensionally stable first component (102) for supporting a food item and a flexible second component (104) dimensioned to receive the dimensionally stable first component. Each of the first component and the second component may include a microwave energy interactive element (106, 124) for altering the effect of microwave energy on a food item within the package.
Abstract:
A microwavable material having a structure that may be used to enhance the browning and crisping, and thus improve the taste and appearance, of a food item cooked therein. The material may be in the form of a sheet material or formed as a container such as a bag, pouch, or other suitable structure. The material may comprise one or more features that help bring the material into close contact with the food item and help conform the bag around the food item. Furthermore, the material may comprise a structure that avoids substantial contact with liquid released by a food item, may have a venting system suitable for the exiting of moisture, may have a coating, a transparent surface, and when formed as a container, may have a gusseted surface.
Abstract:
A susceptor structure comprises a layer of conductive material supported on a non-conductive substrate. The conductive layer includes a resonant loop defined by a plurality of microwave energy transparent segments and, optionally, a microwave energy transparent element within the resonant loop.
Abstract:
Indentation patterns in microwave packaging materials can enhance the baking and browning effects of the microwave packaging materials on food. The indentation patterns can provide venting to either channel moisture from one area of the food product to another, trap moisture in a certain area to prevent it from escaping, or channel the moisture completely away from the food product. The indentation patterns can cause the microwave packaging material underneath a food product to be slightly elevated above the cooking platform in the base of a microwave. The indentation patterns can lessen the heat sinking effect of the cooking platform by providing an air gap for insulation. Elevating the base of the microwave packaging material further allows more incident microwave radiation to propagate underneath the microwave packaging material to be absorbed by the food product or by microwave interactive materials in the microwave packaging material that augment the heating process.
Abstract:
A construct for heating a food item in a microwave oven is provided. The construct may include an opening feature that allows for easy opening thereof. The construct also may include a microwave energy interactive element.
Abstract:
A package configured to receive a food item for storage and heating therein is disclosed. The package includes an opening and a closure mechanism and comprises heat insulating, microwave energy interactive material. A plurality of packages in a stacked relation is also provided.
Abstract:
The present invention relates to a susceptor for the microwave heating of food products that includes a metallized component and a printed component. In another aspect, the invention relates to a method of fabricating a susceptor for the microwave heating of food products that includes a metallized component and a printed component.
Abstract:
A microwavable container (10) has an active microwave energy heating element (28) to distribute energy. The active microwave energy heating element includes a plurality of loops (32) interspersed with islands (34). Similar structures may be used in the tray to distribute energy through the tray. Alternatively, resonant loops interconnected by transmission lines may be dispersed over the tray to distribute energy.