Abstract:
An ultrasonic forceps comprises a housing, an acoustic assembly, and a tine. The housing joins the acoustic assembly and the tine to the forceps and permits the tine to pivot relative to the acoustic assembly. The acoustic assembly comprises a transducer, a waveguide, and ultrasonic blade, and a waveguide sheath. The transducer is configured to generate ultrasonic vibrations directing the ultrasonic vibrations to the waveguide. The waveguide communicates the ultrasonic vibrations distally to the ultrasonic blade. The ultrasonic blade is configured to vibrate in response to the ultrasonic vibrations generated by the transducer. When the tine is pivoted relative to the transducer, the tine is configured to move toward the ultrasonic blade. Tissue may be grasped between the tine and the ultrasonic blade. The tissue may be denatured when the ultrasonic vibrations generated by the transducer vibrate the ultrasonic blade, thus resulting in the tissue being cut and/or sealed.
Abstract:
The present invention comprises compounds of Formula I. Formula I wherein: R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , and R 9 are defined in the specification. The invention also comprises a method of treating or ameliorating a syndrome, disorder or disease, wherein said syndrome, disorder or disease is rheumatoid arthritis or psoriasis. The invention also comprises a method of modulating RORγt activity in a mammal by administration of a therapeutically effective amount of at least one compound of claim 1.
Abstract:
A laser device having a proximal end and a distal end spaced from the proximal end, the distal end configured to receive a fixation member to be affixed to a target surgical site. The laser device includes a laser source supported by the laser device body and capable of emitting a laser beam to the distal end, wherein the laser source is responsive to at least one input so as to selectively switch between an inactive configuration whereby the laser source does not emit the laser beam, and an active configuration whereby the laser source emits the laser beam.
Abstract:
A pigmented skin care composition including a dermatologically acceptable carrier and at least a first and second interference pigment. The composition according to the invention is useful in improving the appearance of the skin and in particular in reducing the appearance of skin discontinuities.
Abstract:
A pigmented skin care composition including a dermatologically acceptable carrier and at least a first and second interference pigment. The composition according to the invention is useful in improving the appearance of the skin and in particular in reducing the appearance of skin discontinuities.
Abstract:
A pigmented skin care composition including a dermatologically acceptable carrier and at least a first and second interference pigment. The composition according to the invention is useful in improving the appearance of the skin and in particular in reducing the appearance of skin discontinuities.
Abstract:
The present disclosure relates, at least in part, to a surgical implant and a method for manufacturing the surgical implant. In one embodiment, the surgical implant comprises a metallic substrate; a tantalum interlayer disposed adjacent to the metallic substrate and comprising ?-tantalum and amorphous tantalum; at least one DLC layer disposed adjacent the tantalum interlayer; wherein the amorphous tantalum has a phase gradient increasing from the metallic substrate side to the DLC side; wherein the DLC layer has a hardness value and an elastic modulus value; and wherein the hardness value has a gradient increasing away from the tantalum side; and wherein the elastic modulus value has a gradient from the tantalum side.
Abstract:
A dilation device (10) comprises an elongate shaft (12), an inflatable balloon (18), and a resilient tube (50). The inflatable balloon is disposed along the shaft. The resilient tube is also disposed along the shaft and is positioned to encompass at least part of the inflatable balloon. The resilient tube is configured to impose an inwardly directed resilient bias on at least a portion of the exterior of the inflatable balloon. At least part of the resilient tube is secured to one or both of the elongate shaft or the inflatable balloon.
Abstract:
The present application discloses embodiments related to an external bone fixation device configured to correct bone deformities or repair bone injuries. The device can include a plurality of bases configured to be attached to portions of a bone and a plurality of struts configured to be adjustable in length to change the position and orientation of the plurality of bases and the attached bone portions.
Abstract:
Surgical instruments and control systems therefor are disclosed. A surgical instrument can comprise: a power circuit comprising a power source and a switch, a microcontroller coupled to the power circuit, a handle comprising an attachment portion, and a control circuit in signal communication with the microcontroller. The attachment portion can comprise a first electrical contact in signal communication with the microcontroller. The control circuit can comprise a sensor configured to detect an attachment state of the attachment portion. The control circuit can communicate the detected attachment state to the microcontroller, and the microcontroller can ignore signals from the first electrical contact when the control circuit communicates a detached state. The attachment portion can comprise a second electrical contact coupled to a second power circuit, and the second power circuit can decouple the second electrical contact and the second power source when the sensor detects the detached state.