Abstract:
Glass-based articles comprise: a lithium-based aluminosilicate composition; a glass-based substrate having opposing first and second surfaces defining a substrate thickness ( t ), wherein t is less than or equal to 0.74 mm; and a stress profile comprising: a spike region extending from the first surface to a tail region. A stress profile comprises: a maximum compressive stress (CS max ) of greater than or equal to 450 MPa; a spike region extending from the first surface to a tail region; and the tail region extending to a center of the glass-based article; wherein the tail region comprises: a region of enhanced stress having a first average compressive stress (CS avg-1 ) of greater than or equal to 100 MPa; and a FSM depth of layer (DOL FSM ) located at a depth of greater than or equal to 13 micrometers.
Abstract:
Laser scoring of a glass ribbon (13) which moves at a non-constant speed is performed using a tilted track (15) and a carriage (14) which travels down the track. The carriage can include a flying optical head (51) which receives laser light from a flexible laser beam delivery system (61) coupled to a laser (41). Variations in the speed of the ribbon which are less than or equal to ±3% of the ribbon's nominal speed can be accommodated by varying the speed of the carriage and adjusting the output power of the laser (41). Greater speed variations can additionally involve adjusting the tilt angle α the track. Adjustments of the orientation of a first lens unit (53) within the flying optical head (51) can be made to maintain the major axis of the laser beam along the score line as the tilt angle is changed.
Abstract:
A glass element having a thickness from 25 µm to 125 µm, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress σI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.