Abstract:
Various circuits may benefit from suitable protection. For example, certain displays, such as active matrix liquid crystal displays, may benefit from enclosures configured to protect driver circuits from high intensity radiated fields. A system can include a first protective conductive coating layer. The system can also include a first insulating layer on the first protective conductive layer. The system can further include a signal conductive layer on the insulating layer. The system can additionally include a driver layer mounted to the signal conductive layer. The system can also include a second insulating layer above the driver layer. The system can further include a second protective conductive coating layer on the second insulating layer. The system can additionally include one or a plurality of conductive elements disposed between the first protective conductive coating layer and the second protective conductive coating layer to form an enclosure around the driver layer.
Abstract:
A liquid crystal display device with a high aperture ratio is provided. A liquid crystal display device with low power consumption is provided. A display device includes a liquid crystal element, a transistor, a scan line, and a signal line. The liquid crystal element includes a pixel electrode, a liquid crystal layer, and a common electrode. The scan line and the signal line are each electrically connected to the transistor. The scan line and the signal line each include a metal layer. The transistor includes a metal oxide layer, a gate, and a gate insulating layer. The metal oxide layer includes a first region and a second region. The first region overlaps with the gate with the gate insulating layer therebetween. The second region includes a first part connected to the pixel electrode. The resistivity of the second region is lower than that of the first region. The pixel electrode, the common electrode, and the first part are configured to transmit visible light. The visible light passes through the first part and the liquid crystal element and is emitted to the outside of the display device.
Abstract:
Single-layer translucent film arrays of flexible and rigid materials are disclosed. The arrays are formed by hot pressing panes of refractive index matched materials form a continuous film. Systems and techniques for producing single-layer translucent film arrays with flexible and rigid portions are also described.
Abstract:
Certain aspects of the technology disclosed herein integrate a camera with an electronic display. An electronic display includes several layers, such as a cover layer, a color filter layer, a display layer including light emitting diodes or organic light emitting diodes, a thin film transistor layer, etc. In one embodiment, the layers include a substantially transparent region disposed above the camera. The substantially transparent region allows light from outside to reach the camera, enabling the camera to record an image. In another embodiment, the color filter layer does not include a substantially transparent region, and the camera records the light from the outside colored by the color filter layer. According to another embodiment, while none of the layers include a substantially transparent region, the layers are all substantially transparent, and the camera disposed beneath the layers records light reaching the camera from outside.
Abstract:
A foldable electronic device module includes a glass cover element having a thickness from about 25 µm to about 200 µm, an elastic modulus from about 20 GPa to about 140 GPa and a puncture resistance of at least 1.5 kgf. The module further includes a stack with a thickness between about 100 µm and about 600 µm; and a first adhesive joining the stack to the cover element with a shear modulus between about 1 MPa and about 1 GPa. The stack further includes a panel, an electronic device, and a stack element affixed to the panel with a stack adhesive. Further, the device module is characterized by a tangential stress at a primary surface of the cover element of no greater than about 1000 MPa in tension upon bending the module to a radius from about 20 mm to about 2 mm.