Abstract:
Connector tongues that may provide a high signal quality or signal integrity to allow high speed data transfers, may be reliably manufactured, and may be durable and have good wear performance. One example may provide a connector tongue having contacts and traces formed on a printed circuit board. Using a printed circuit board for pathways through a connector tongue may provide low impedances for power traces, matched impedances for differential signal pairs, and shielding. This may provide a connector tongue that may provide a high signal quality or signal integrity to allow high speed data transfers. These and other examples may provide a connector tongue that is durable and has good wear performance by including side retention features on each side of the printed circuit board. The side retention features may be metallic, ceramic, or other durable material.
Abstract:
Pressure sensors and associated structures that may have reduced light sensitivity. An example may provide structures reducing light at a component on a membrane of a pressure sensor.
Abstract:
Pressure sensors and associated structures that may have reduced light sensitivity. An example may provide structures reducing light at a component on a membrane of a pressure sensor.
Abstract:
Connector tongues that may provide a high signal quality or signal integrity to allow high speed data transfers, may be reliably manufactured, and may be durable and have good wear performance. One example may provide a connector tongue having contacts and traces formed on a printed circuit board. Using a printed circuit board for pathways through a connector tongue may provide low impedances for power traces, matched impedances for differential signal pairs, and shielding. This may provide a connector tongue that may provide a high signal quality or signal integrity to allow high speed data transfers. These and other examples may provide a connector tongue that is durable and has good wear performance by including side retention features on each side of the printed circuit board. The side retention features may be metallic, ceramic, or other durable material.
Abstract:
Connector inserts and connector receptacles that have a small form factor and where when a connector insert and connector receptacle are mated, the connector insert can rotate and articulate relative to an electronic device housing the connector receptacle. The connector receptacle can be connected to components in the electronic device through a flexible circuit board having an amount of slack or excess length to allow the connector receptacle and the connector insert to rotate relative to the connected components. A bearing supporting the connector receptacle can articulate about an axis to allow the connector receptacle and connector insert to articulate relative to the connected components. The bearing can further support a locking mechanism to lock the connector insert in place in the connector receptacle.
Abstract:
Connector receptacles may be provided, where a multiple of such connector receptacles may be readily aligned to openings in a device enclosure, particularly where the openings are located on a curved or otherwise non-planar surface of the device enclosure. One example may provide a connector assembly (1 12) that includes a plurality of connector receptacles (220,221). The connector receptacles (220,221) in a connector assembly (1 12) may be accurately aligned or registered to each other, and the connector assembly (1 12) may be accurately aligned to a device enclosure. In this way, several connector receptacles may be accurately aligned to openings in the device enclosure. In another example, two or more connector receptacles may have faces that are at an oblique angle relative to each other.
Abstract:
Pressure sensors and their methods of manufacturing, where the pressure sensors have a small, thin form factor and may include features designed to improve manufacturability and where the method of manufacturing may improve yield and reduce overall costs. A pressure sensor comprisis - a membrane (122) formed on a top surface of a handle portion of the pressure sensor - a base portion opposite the handle portion, the base portion wider and thicker than the handle portion - a plurality of bond pads formed on a top surface of the base portion - a device identifier (114) on a top surface of the pressure sensor - a blocking structure (116) on the top surface of the pressure sensor between the plurality of bond pads and the device identifier
Abstract:
Patch-clamp amplifiers that may be readily manufactured, may be simple to reconfigure for product updates, and can be quickly reconfigured into a different mode during operation. One example may provide patch-clamp amplifiers that may be readily manufactured by implementing some or all of the compensation and other circuits using digital circuitry. These digital circuits may be implemented using discrete or integrated logic circuits, programmable logic such as field-programmable gate arrays or programmable logic arrays, or other fixed or configurable logic circuits or combination thereof. These programmable logic circuits may be reconfigured by a user or by a manufacturer through firmware or software updates when a product update is desired. These circuits may also be quickly reconfigured to allow rapid switching between modes during use.