Abstract:
A superhard structure comprises a body of polycrystalline superhard material comprising a first region and a second region. The second region is adjacent an exposed surface of the superhard structure and comprises a diamond material or cubic boron nitride with a density greater than 3.4x103 kilograms per cubic metre when the second region comprises diamond material. The material(s) forming the first and second regions have a difference in coefficient of thermal expansion, the first and second regions being arranged such that this difference induces compression in the second region adjacent the exposed surface. The first/a further region has the highest coefficient of thermal expansion of the polycrystalline body and is separated in part from a peripheral free surface of the body by the second region or one or more further regions formed of a material(s) of a lower coefficient of thermal expansion. The regions comprise a plurality of grains of polycrystalline superhard material. The second region is peripherally discontinuous with a gap therein through which a portion of the region formed of the material of highest coefficient of thermal expansion extends to the free surface of the superhard structure. There is also disclosed a method for making such a structure.
Abstract:
A superhard structure comprises a body of polycrystalline superhard material comprising a first region and a second region, the second region being adjacent an exposed surface of the superhard structure, the second region comprising a diamond material or cubic boron nitride, the density of the second region being greater than 3.4x103 kilograms per cubic metre when the second region comprises diamond material. The material(s) forming the first and second regions have a difference in coefficient of thermal expansion, the first and second regions being arranged such that this difference induces compression in the second region adjacent the exposed surface. The first/a further region has the highest coefficient of thermal expansion of the polycrystalline body and is separated from a peripheral free surface of the body of polycrystalline superhard material by the second region or one or more further regions formed of a material or materials of a lower coefficient of thermal expansion. The regions comprise a plurality of grains of polycrystalline superhard material. There is also disclosed a method of making such a material.
Abstract:
A PCD structure comprising a first region, in a state of residual compressive stress, and a second region in a state of residual tensile stress adjacent the first region; the first and second regions each formed of respective PCD grades and directly bonded to each other by intergrowth of diamond grains, the PCD grades having transverse rupture strength (TRS) of at least 1,200 MPa. A third region in a state of residual compressive stress may also be provided such that the second region is disposed between the first and third regions and is bonded to the first and third regions by intergrowth of diamond grains.
Abstract:
The invention is for a cutting element comprising a layer or table (10) of superhard abrasive material presenting a working surface (14,), a side surface (16,) and a peripheral edge (18) between the working surface (14) and the side surface (16). The peripheral edge (18) is defined by a leading edge chamfer (22) having an edge contiguous with the working surface (14), a trailing edge chamfer (24) and a break-in chamfer (20) between the leading edge chamfer (22) and the trailing chamfer (24). The trailing chamfer (24) is contiguous with the break-in chamfer (20) along a line of intersection (26) which defines a cutting edge for the break-in chamfer (20). The leading edge (22) chamfer may comprise more than one section and its length may be greater than the length of the break-in chamfer (20).
Abstract:
Cutting elements for earth-boring tools may generate a shear lip at a wear scar thereon during cutting. A diamond table may exhibit a relatively high wear resistance, and an edge of the diamond table may be chamfered, the combination of which may result in the formation of a shear lip. Cutting elements may comprise multi-layer diamond tables that result in the formation of a shear lip during cutting. Earth-boring tools include such cutting elements. Methods of forming cutting elements may include selectively designing and configuring the cutting elements to form a shear Hp. Methods of cutting a formation using an earth-boring tool include cutting the formation with a cutting element on the tool, and generating a shear lip at a wear scar on the cutting element. The cutting element may be configured such that the shear lip comprises diamond material of the cutting element.
Abstract:
There is provided a method of making a composite abrasive compact which comprises an abrasive compact (30) bonded to a substrate (32). The abrasive compact will generally be a diamond compact and the substrate will generally be a cemented carbide substrate. The composite abrasive compact is made under known conditions of elevated temperature and pressure suitable for producing abrasive compacts. The method is characterised by the mass of abrasive particles from which the abrasive compact is made. This mass has three regions which are: (i) an inner region (36), adjacent the surface of the substrate (32) on which the mass is provided, containing particles having at least four different average particle sizes; (ii) an outer region (40) containing particles having at least three different average particle sizes; and (iii) an intermediate region (38) between the first and second regions.
Abstract:
Cutting elements for earth-boring tools may generate a shear lip at a wear scar thereon during cutting. A diamond table may exhibit a relatively high wear resistance, and an edge of the diamond table may be chamfered, the combination of which may result in the formation of a shear lip. Cutting elements may comprise multi-layer diamond tables that result in the formation of a shear lip during cutting. Earth-boring tools include such cutting elements. Methods of forming cutting elements may include selectively designing and configuring the cutting elements to form a shear Hp. Methods of cutting a formation using an earth-boring tool include cutting the formation with a cutting element on the tool, and generating a shear lip at a wear scar on the cutting element. The cutting element may be configured such that the shear lip comprises diamond material of the cutting element.
Abstract:
Cutting elements for earth-boring tools may generate a shear lip at a wear scar thereon during cutting. A diamond table may exhibit a relatively high wear resistance, and an edge of the diamond table may be chamfered, the combination of which may result in the formation of a shear lip. Cutting elements may comprise multi-layer diamond tables that result in the formation of a shear lip during cutting. Earth-boring tools include such cutting elements. Methods of forming cutting elements may include selectively designing and configuring the cutting elements to form a shear Hp. Methods of cutting a formation using an earth-boring tool include cutting the formation with a cutting element on the tool, and generating a shear lip at a wear scar on the cutting element. The cutting element may be configured such that the shear lip comprises diamond material of the cutting element.