Abstract:
Polycrystalline diamond includes a working surface and a peripheral surface extending around an outer periphery of the working surface. The polycrystalline diamond includes a first volume including an interstitial material and a second volume having a leached region that includes boron and titanium. A method of fabricating a polycrystalline diamond element includes positioning a first volume of diamond particles adjacent to a substrate, the first volume of diamond particles including a material that includes a group 13 element, and positioning a second volume of diamond particles adjacent to the first volume of diamond particles such that the first volume of diamond particles is disposed between the second volume of diamond particles and the substrate, the second volume of diamond particles having a lower concentration of material including the group 13 element than the first volume of diamond particles. Various other articles, assemblies, and methods are also disclosed.
Abstract:
A superhard polycrystalline construction comprises a body of polycrystalline superhard material comprising a structure comprising superhard material, the structure having porosity greater than 20% by volume and up to around 80% by volume. A method of forming such a superhard polycrystalline construction comprises forming a skeleton structure of a first material having a plurality of voids, at least partially filling some or all of the voids with a second material to form a pre-sinter assembly, and treating the pre-sinter assembly to sinter together grains of superhard material to form a body of polycrystalline superhard material comprising a first region of superhard grains, and an interpenetrating second region; the second region being formed of the other of the first or second material that does not comprise the superhard grains; the superhard grains forming a sintered structure having a porosity greater than 20% by volume and up to around 80% by volume.
Abstract:
Diamond-containing articles such as composite materials shaped as some specific article, can be engineered such that bodies that contact the article only contact diamond. In an embodiment, the article may be in the form of equipment for handling semiconductor wafers such as vacuum or electrostatic chucks. In one embodiment, the diamond-containing article can be a composite of diamond particulate reinforcing a Si/SiC body such as reaction-bonded SiC. Lapping the diamond-reinforced RBSC body with progressively finer diamond grit removes some of the SiC/Si matrix material, leaving diamond particles of uniform height "standing proud" above the rest of the surface of the formed article. Further, if the diamond-containing article is sufficiently electrically conductive, it may be machinable using electrical discharge machining.
Abstract:
A compact, a superabrasive compact and a method of making the compact and superabrasive compact are disclosed. A compact may comprise a plurality of carbide particles, a binder, and a species. The binder may be dispersed among the plurality of tungsten carbide particles. The species may be dispersed in the compact, wherein the binder has a melting point from about 600 C to about 1350 C at ambient pressure. A superabrasive compact may include a diamond table and a substrate. The diamond table may be attached to the substrate. The substrate may have a binder. The melting point of the binder is from about 600 C to about 1350 C at high pressure from about 30 kbar to about 100 kbar.
Abstract:
A polycrystalline diamond construction comprises diamond grains exhibiting inter-granular bonding and defining a plurality of interstitial regions, and a non-diamond phase at least partially filling a plurality of the interstitial regions to form non-diamond pools. The percentage of non-diamond phase in the total area of a cross-section of the body of polycrystalline diamond material is between around 0 to 5 %, and the average nearest neighbour distance between grains of the non-diamond phase is less than around 1.3 microns in an analysed image of a cross-section through the body of polycrystalline material when analysed using an image analysis technique at a magnification of around 1000 and an image area of 1280 by 960 pixels; or is between around 5 to 10 %, and the average nearest neighbour distance between grains of the non-diamond phase is less than around 1.04 microns, or is between around 10 to 15 %, and the average nearest neighbour distance between grains of the non-diamond phase is less than around 1.04 microns, or is between around 15 to 30%, and the average nearest neighbour distance between grains of the non-diamond phase is less than around 0.8 microns.
Abstract:
In an embodiment, a polycrystalline diamond compact includes a substrate and a preformed polycrystalline diamond table bonded to the substrate. The table includes bonded diamond grains defining interstitial regions. The table includes an upper surface, a back surface bonded to the substrate, and at least one lateral surface extending therebetween. The table includes a first region extending inwardly from the upper surface and the lateral surface. The first region exhibits a first interstitial region concentration and includes at least one interstitial constituent disposed therein, which may be present in at least a residual amount and includes at least one metal carbonate and/or at least one metal oxide. The table includes a second bonding region adjacent to the substrate that extends inwardly from the back surface. The second bonding region exhibits a second interstitial region concentration that is greater than the first interstitial region concentration and includes a metallic infiltrant therein.
Abstract:
A tool (10) for removing fusion bonded epoxy coating from the surface of a pipe has an elongate rotatable shaft (12) suitable for being received in a rotating tool holder of a machine. Extending radially outward of the distal end (16) of the shaft (12) are a plurality of fingers (40), the outer ends of which are spaced apart. Each of the fingers (40) is made of a spring metal, and at the distal end of each finger is an abrasive pad (60) having diamond particles embedded in soft metal. Spring force is independently applied by each spring finger (40) to its associated abrasive pad (60).
Abstract:
Cutting elements for earth-boring tools may generate a shear lip at a wear scar thereon during cutting. A diamond table may exhibit a relatively high wear resistance, and an edge of the diamond table may be chamfered, the combination of which may result in the formation of a shear lip. Cutting elements may comprise multi-layer diamond tables that result in the formation of a shear lip during cutting. Earth-boring tools include such cutting elements. Methods of forming cutting elements may include selectively designing and configuring the cutting elements to form a shear Hp. Methods of cutting a formation using an earth-boring tool include cutting the formation with a cutting element on the tool, and generating a shear lip at a wear scar on the cutting element. The cutting element may be configured such that the shear lip comprises diamond material of the cutting element.
Abstract:
Embodiments relate to polycrystalline diamond compacts ("PDCs") including a polycrystalline diamond ("PCD") table that is substantially free of defects formed due to abnormal grain growth of tungsten carbide grains, and methods of fabricating such PDCs. In an embodiment, a PDC comprises a cemented tungsten carbide substrate including an interfacial surface that is substantially free of tungsten carbide grains exhibiting abnormal grain growth, and a PCD table bonded to the interfacial surface of the cemented tungsten carbide substrate. The PCD table includes a plurality of bonded diamond grains defining a plurality of interstitial regions. At least a portion of the interstitial regions includes a metal-solvent catalyst disposed therein. The PCD table may be substantially free of chromium or the PCD table and the cemented tungsten carbide substrate may each include chromium.
Abstract:
A cup wheel for a grinding tool for use in grinding semiconductor substrates is presented herein, the wheel comprising: a hub having a pair of opposing faces and a peripheral rim linking said faces; and at least one grinding segment mounted on and upstanding from at least one face of the hub; wherein in use, as the wheel is rotated, the face ofthe hub on which the at least one grinding segment is mounted is directed towards the substrate to be ground, to bring the at least one grinding segment into contact withthe substrate, and wherein at least one pair of side faces of the at least one grinding segment intersect at a leading edge which substantially faces the direction of travel of the grinding segment as the wheel rotates.