Abstract:
A method of determining beryllium or a beryllium compound thereof in a sample is disclosed by measuring fluorescence. This method discloses use of highly alkaline fluorescent indicating dye solutions with pH greater than 12.9. In a preferred embodiment the fluorescent indicating dye solutions do not contain a pH buffer. Further, the method also discloses measuring fluorescence under highly alkaline conditions, where the pH after mixing the highly alkaline fluorescent indicating dye solutions with the sample solution containing beryllium is at least 11, preferably 12. The use of highly alkaline solution provides superior detection limits for beryllium by using dilution ratios of 4X and lower.
Abstract:
Use of high throughput methods to analyze samples for toxic elements originating from industrial hygiene and environmental sampling are described. These methods utilize optical detection methods using plates with arrays and microwells. Methods to fabricate samples in such plates are described. The invention is particularly illustrated by demonstrating its applicability for analysis of beryllium by fluorescence. This invention also discloses the use of improved filtration method compatible with the high throughput methods of sample preparation and analysis.
Abstract:
This invention discloses how EC devices can be fabricated as tags or labels; and further the materials used, device structures and how these can be processed by printing technologies. In addition, systems using displays of such EC devices and their integration with other components are described for forming labels and tags, etc, that may be actuated wirelessly or powered with low voltage and low capacity batteries.
Abstract:
Use of high throughput methods to analyze samples for toxic elements originating from industrial hygiene and environmental sampling are described. These methods utilize optical detection methods using plates with arrays and microwells. Methods to fabricate samples in such plates are described. The invention is particularly illustrated by demonstrating its applicability for analysis of beryllium by fluorescence. This invention also discloses the use of improved filtration method compatible with the high throughput methods of sample preparation and analysis.
Abstract:
An improved low-cost practical method of determining beryllium or a beryllium compound thereof in a sample is disclosed by measuring fluorescence. This method discloses methods to lower the back ground fluorescence. Further, the method is extended to improved analysis of beryllium in soils by including a heating step.