Abstract:
Solar trackers (100) and methods for assembling same are described herein. A pair of ballast blocks (108), simultaneously using a slip-form paver having a cut-off blade (510), by positioning the paver at a start point of the pair of ballast blocks (108). The cut-off blade (510) is oriented in a closed position, halting flow of concrete. The slip-form paver is advanced to an end point of the pair of ballast blocks (108). While advancing the slip-form paver, the cut-off blade (510) is simultaneously moved to an open position. The open position permits flow of the concrete through a mold (400) depositing onto a solar tracker location. After reaching the end point, the cut-off blade (510) is moved to the closed position. Grooves (112) oriented lengthwise are formed in each ballast block (108). A leg (104) structure of the solar tracker (100) is secured into the grooves (112).
Abstract:
A method for installing a solar collector can include slip-forming a concrete track including a groove; curing the concrete track; placing a foot of a support structure of a solar collector in the groove; and applying adhesive between the foot and groove. Curing the concrete track optionally can include maintaining wetness of the concrete track for a sufficient period of time after slip-forming the concrete track. The foot optionally can include at least one of an aperture and a tab, and the adhesive flows through the aperture or around the tab. A foot of a support structure of a solar collector also is provided. The foot can be configured to be inserted into a groove and comprising a back wall, a first side wall including a first side tab, a second side wall including a second side tab, a third side wall, a fourth side wall, and a bottom wall.
Abstract:
A system for maintaining photovoltaic modules includes an elongated rail including first and second support surfaces and a first mounting surface disposed between the first and second support surfaces. An array of the photovoltaic modules is coupled to the first mounting surface and raised relative to the first and second support surfaces. A first vehicle can be disposed on the first and second support surfaces and can include a motor; a maintenance module selected from the group consisting of: a spray system configured to spray a product, and a remote inspection module; and first and second support legs suspending the maintenance module relative to the photovoltaic modules of the first array and being movably coupled to the first and second support surfaces so as to laterally and sequentially move the maintenance module in a direction parallel to the elongated rail responsive to actuation of the motor.
Abstract:
Under one aspect, a system for cleaning an array of solar panels is provided. The system includes a drive system and a cleaning head that includes a fluid emitter configured to deposit fluid onto the solar panels; a wiper; a wiper support structure; and spaced first and second mechanical linkages that respectively couple first and second portions of the wiper to the wiper support structure partially independently of one another and partially independently of the wiper support structure such that the wiper sequentially substantially fully contacts each of the solar panels to wipe the deposited fluid from those solar panels as the drive system moves along the array.
Abstract:
Systems and methods for dual tilt, ballasted photovoltaic module racking are provided herein. Under one aspect, a system for supporting first and second photovoltaic modules can include first and second elongated stiffeners respectively configured to be coupled to and support the first and second photovoltaic modules. The system also can include first and second feet respectively configured to be coupled to first and second grooves respectively provided within first and second ballasts. The system also can include a first stiffener hinge rotatably coupling the first and second stiffeners to one another, a first foot hinge rotatably coupling the first foot to the first stiffener, and a second foot hinge rotatably coupling the second foot to the second stiffener. At least one of the first stiffener hinge and the first and second foot hinges can include a respective mechanical stop inhibiting rotation of that hinge beyond a respective predetermined angle.
Abstract:
A method of locating a maintenance vehicle in a solar power field can include driving the maintenance vehicle on a track. A plurality of flags are coupled to the track at spaced locations. Each flag can include an ID tag and a contact target or a non-contact target. The maintenance vehicle can include an ID tag reader and a sensor configured to detect the contact target or the non-contact target. The method also can include driving the maintenance vehicle along the track to a position adjacent to a flag of the plurality of flags, reading by the ID tag reader the ID tag of that flag, and sensing by the sensor the contact target or the non-contact target. The method also can include, based on the reading and the sensing, identifying a unique location of the maintenance vehicle in the solar power field.
Abstract:
A system can include first and second stiffeners each coupled to a photovoltaic module, and first, second, third, and fourth legs. First and second joints rotatably couple the first and second legs to the first stiffener; and third and fourth joints rotatably couple the third and fourth legs to the second stiffener. A first crossbrace fixedly couples the first and second legs to one another; and a second crossbrace fixedly couples the third and fourth legs to one another. The first and second legs are rotatable about the first and second joints from a stowed position to an open position supporting the photovoltaic module, and the third and fourth legs are rotatable about the third and fourth joints from a stowed position to an open position supporting the photovoltaic module. At least one of the joints can include an electrical conductor coupled to the respective stiffener and leg.
Abstract:
Diagnostic vehicles, systems, and methods for characterizing a solar collector system are presented herein. The diagnostic vehicle comprises a frame, one or more sensors positioned along the frame, and a control system. The one or more sensors measure and characterize attributes of the solar collector system and/or its environment such as a reflectivity of an area of ground around the solar collector system, an angular offset of a drive system of the solar collector system, and/or a degradation of structural components that support photovoltaic panels in the solar collector system. The control system is programmed to move the frame to one or more locations in the solar collector system and control the one or more sensors to acquire measurements at the one or more locations.
Abstract:
Systems and methods are provided for rotatably mounting and locking solar (e.g., photovoltaic) panels. For example, the solar panels can be mounted so as to be rotatable about an axis so as to track the sun over the course of the day, and can be locked in a suitable position during high- wind conditions. A drive mechanism includes a drive shaft, pinion gear coupled to the drive shaft, and arc gear coupled to a solar panel, and a locking mechanism includes a lock plate coupled to the arc gear and including a reaction surface. The pinion gear includes a bearing surface. When the drive shaft rotates a first amount, engagement between pinion gear teeth and arc gear teeth rotates the arc gear. When the drive shaft rotates a second amount, the arc gear rotates to a stow position where the reaction surface bears against the bearing surface, locking the arc gear.
Abstract:
Wind screen for one or more photovoltaic arrays and method thereof. For example, wind screen for one or more photovoltaic arrays includes a screen foundation including a concrete block, and one or more perforation blocks on the concrete block. In another example, the wind screen is configured to cover at least a first side of each array of the one more photovoltaic arrays.