Abstract:
A transmitter with data stream transformation circuitry is described. The transmitter has a first driver and a second driver. Each driver has an output for a respective analog signal. A summation circuit combines respective analog signals from the first driver and the second driver. A data selection circuit processes at least two data streams. Each data stream corresponds to a time sequence of digital data symbols. The data selection circuit selectively couples at least one of the data streams to at least one of the drivers during each time interval of a sequence of time intervals, thereby applying a linear transformation to the data streams. A finite state machine controls the data selection circuit during each time interval of the sequence of time intervals.
Abstract:
A transform circuit includes a first circuit and a second circuit. The first circuit and the second circuit implement first and second mappings that together generate a pre-defined transform of N digital data symbols. The first circuit maps a set of N digital data symbols from N parallel data streams to N analog data symbols by generating N sets of first weighted sums of the N digital data symbols. Each respective first weighted sum is defined by a respective set of pre-determined first weighting values in a first matrix. The second circuit maps the N analog data symbols to a sequence of N output signals over N time intervals. Each of the N output signals corresponds to a respective second weighted sum of the N analog data symbols. Each respective second weighted sum is defined by a respective set of pre-determined second weighting values in a second matrix.
Abstract:
Described are communication systems that convey differential and common-mode signals over the same differential channel. Noise-tolerant communication schemes use low-amplitude common-mode signals that are easily refected by differential receivers thus allowing for very high differential data rates. Some embodiments employ the common-mode signals to transmit bacchanal signals for adjusting the characteristics of the differential transmitter. Backchannel control signals are effectively conveyed even if the forward channel transmitter is so maladjusted that the received differential data is unrecognizable. Systems in accordance with the above-described embodiments obtain these advantages without additional pins or communications channels, and are compatible with both AC-coupled and DC-coupled communications channels. Data coding schemes and corresponding data recovery circuits eliminate the need for complex, high-speed CDR circuits.
Abstract:
A transform circuit includes a first circuit and a second circuit. The first circuit and the second circuit implement first and second mappings that together generate a pre-defined transform of N digital data symbols. The first circuit maps a set of N digital data symbols from N parallel data streams to N analog data symbols by generating N sets of first weighted sums of the N digital data symbols. Each respective first weighted sum is defined by a respective set of pre-determined first weighting values in a first matrix. The second circuit maps the N analog data symbols to a sequence of N output signals over N time intervals. Each of the N output signals corresponds to a respective second weighted sum of the N analog data symbols. Each respective second weighted sum is defined by a respective set of pre-determined second weighting values in a second matrix.