Abstract:
A touch-sensitive textile device that is configured to detect the occurrence of a touch, the location of a touch, and/or the force of a touch on the touch-sensitive textile device. In some embodiments, the touch-sensitive textile device includes a first set of conductive threads oriented along a first direction, and a second set of conductive threads interwoven with the first set of conductive threads and oriented along a second direction. The device may also include a sensing circuit that is operatively coupled to the first and second set of conductive threads. The sensing circuit may be configured to apply a drive signal to the first and second set of conductive threads. The sensing circuit may also be configured to detect a touch or near touch based on a variation in an electrical measurement using the first or second set of conductive threads.
Abstract:
Three-dimensional weaving, knitting, or braiding tools may be used to create three-dimensional fabric (24) with internal pockets (56). The pockets (56) may be shaped to receive electrical components such as switch electrodes (46A, 46B) for a switch (18). The fabric (24) may have adjacent first and second layers that are interposed between the switch electrodes (46A, 46B). The switch electrodes (46A, 46B) may be biased apart using magnets (46A-1, 46B-1) or other biasing structure. In a region of the fabric (24) that overlaps the first and second switch electrodes (46A, 46B), the first and second layers of fabric may be disconnected from each other. This allows the first and second layers to pull away from each other so that the electrodes (46A, 46B) are separated by the biasing force from the biasing structure. The switch (18) can be closed by pressing the electrodes (46A, 46B) together.
Abstract:
Weaving equipment may include warp strand positioning equipment that positions warp strands and weft strand positioning equipment that inserts weft strands among the warp strands to form fabric. The fabric may include insulating strands and conductive strands. Conductive strands may run orthogonal to each other and may cross at open circuit and short circuit intersections. The fabric may be formed using pairs of interwoven warp and weft strands. Conductive warp and weft strands may be interposed within the pairs of strands. The fabric may be a single layer fabric or may contain two or more layers. Stacked warp strands may be formed between pairs of adjacent insulating warp strands. The stacked warp strands may include insulating and conductive strands. Touch sensors and other components may include conductive structures that are formed from the conductive strands in the fabric.
Abstract:
An item may be provided with a body that forms an enclosure. The body (12) may have body portions (16, 18) that open and close along a seam (14). An elongated magnetic fastener (36) may run along the seam. The magnetic fastener may have first (38) and second (40) portions on opposing sides of the seam. The first and second portions may include magnets. When the magnetic fastener is operated in a closed state, the magnets in the first and second portions attract each other and pull the first and second portions of the fastener together to close the seam. When the magnetic fastener is operated in an open state, the magnets in the first and second portions repel each other and push the first and second portions of the fastener apart to open the seam.
Abstract:
Weaving equipment may include strand positioning equipment that positions warp strands and that inserts weft strands among the warp strands to form fabric. The weaving equipment may include one or more guide arms that pushes warp strands in the weft direction during weaving. Fabrics having warp strands that extend in both the warp direction and the weft direction may be used in forming circuitry in fabrics such as touch sensor circuitry. For example, a touch sensor in a fabric may be formed using first conductive warp strands that form first touch sensor electrodes and second conductive warp strands that form second touch sensor electrodes that overlap with the first touch sensor electrodes. The second conductive warp strands may each have a first portion that extends in the warp direction and a second portion that extends in the weft direction across the first touch sensor electrodes.
Abstract:
Apparatus, comprising fabric (62) formed from fibers (74); and an electrical component (20) having first and second perpendicular fiber guiding structures, wherein a first of the fibers is soldered in the first fiber guiding structure and a second of the fibers is soldered in the second fiber guiding structure.