Abstract:
An enclosure for a dry-type transformer includes a bottom wall, a plurality of sidewalls coupled to and extending from the bottom wall, and a top wall coupled to the sidewalls so as to be spaced from the bottom wall. The top wall includes an opening therein. The bottom wall, sidewalls and top wall define an enclosed space for housing a dry-type transformer. Pressure relief structure is associated with the top wall and has at least one flap constructed and arranged in a closed position, to cover the opening. In the event an arc flash occurs in the enclosure creating gas pressure in the enclosure, the flap is constructed and arranged to move from the closed position to an opened position due to the gas pressure acting thereon, permitting the gas pressure to escape from the top of the enclosure through the opening.
Abstract:
Arc resistant enclosures for dry-type transformers. More particularly, transformer enclosures having one or more arc-resistant features, including arc channels, arc fault dampers, and arc fault plenums, and methods for providing same.
Abstract:
Arc resistant enclosures for dry-type transformers. More particularly, transformer enclosures having one or more arc-resistant features, including arc channels, arc fault dampers, and arc fault plenums, and methods for providing same
Abstract:
A method provides a radial drop winding for an open wound transformer. A plurality of non-electrically conductive posts (10) are arranged to define an interior space. Each post is of generally L-shape having a main body (14) and a leg (16) extending from a bottom end of the main body. During an open winding process, conductive wire (54) is dropped to build up lengthwise along the posts to define at least one generally cylindrical winding segment (56, 58) supported by the legs of the posts.
Abstract:
An enclosure for a dry-type transformer includes a bottom wall, a plurality of sidewalls coupled to and extending from the bottom wall, and a top wall coupled to the sidewalls so as to be spaced from the bottom wall. The top wall includes an opening therein. The bottom wall, sidewalls and top wall define an enclosed space for housing a dry-type transformer. Pressure relief structure is associated with the top wall and has at least one flap constructed and arranged in a closed position, to cover the opening. In the event an arc flash occurs in the enclosure creating gas pressure in the enclosure, the flap is constructed and arranged to move from the closed position to an opened position due to the gas pressure acting thereon, permitting the gas pressure to escape from the top of the enclosure through the opening.
Abstract:
Arc resistant enclosures for dry-type transformers. More particularly, transformer enclosures having one or more arc-resistant features, including arc channels, arc fault dampers, and arc fault plenums, and methods for providing same.
Abstract:
A method of manufacturing a transformer that includes forming a disc-wound coil using a plurality of pre-formed cooling ducts. Each cooling duct may be supported by a support pipe secured between walls of the cooling duct, or by a removable insert. First and second conductor layers are formed, each of which include plurality of disc windings arranged in an axial direction of the disc-wound coil. A spacer layer is formed between the first and second conductor layers to form a plurality of axially-extending passages. The cooling ducts are slid into the axially- extending passages so as to be disposed between the first and second conductor layers.
Abstract:
A dry type cast coil transformer (28) includes a hollow body (29), a dome structure (26) extending from the body, and undulation structure (30), defining at least a portion of an outer surface of the dome structure, constructed and arranged to increase an electrical track path in the dome structure.
Abstract:
A method provides a medium voltage radial drop winding (10) for an open wound transformers. The method arranges a plurality of non-electrically conductive supports (16) to extend outwardly from a periphery of an imaginary geometric shape so as to define an interior space (17). Each support includes a pair of opposing legs (18, 20) disposed in spaced relation and a bottom leg (24) coupling the opposing legs to define at least one elongated slot (22) between the opposing legs. Each slot has an open end. Conductive wire (12) is dropped into the open end of each of the slots to substantially fill the slots and define at least one generally cylindrical winding segment carried by the supports.
Abstract:
A protective coating system for application to exposed surfaces of a transformer core prevents corrosion of the core. The protective coating is suitable for use in industrial and marine environments where many factors impact the life of the transformer core. The protective coating comprises at least three coating layers. The first coating layer is an inorganic zinc silicate primer. The second coating layer is a polysiloxane. The third coating layer is a room temperature or high temperature vulcanizing silicone rubber. A silicone rubber sealant may be further applied to outer edge surfaces of the core.