Abstract:
A steel composition and method from making a dual phase steel therefrom. In at least one embodiment, the dual phase steel comprises carbon in an amount of about 0.05% by weight to about 0.12 wt%; niobium in an amount of about 0.005 wt % to about 0.03 wt%; titanium in an amount of about 0.005 wt% to about 0.02 wt%; nitrogen in an amount of about 0.001 wt% to about 0.01 wt%; silicon in an amount of about 0.01 wt% to about 0.5 wt%; manganese in an amount of about 0.5 wt% to about 2.0 wt%; and a total of molybdenum, chromium, vanadium and copper less than about 0.15 wt%. The steel has a first phase consisting of ferrite and a second phase comprising one or more constituents selected from the group consisting of carbide, pearlite, martensite, lower bainite, granular bainite, upper bainite, and degenerate upper bainite. A solute carbon content in the first phase is about 0.01 wt% or less.
Abstract:
A steel composition and method from making a dual phase steel therefrom. In at least one embodiment, the dual phase steel comprises carbon in an amount of about 0.05% by weight to about 0.12 wt%; niobium in an amount of about 0.005 wt % to about 0.03 wt%; titanium in an amount of about 0.005 wt% to about 0.02 wt%; nitrogen in an amount of about 0.001 wt% to about 0.01 wt%; silicon in an amount of about 0.01 wt% to about 0.5 wt%; manganese in an amount of about 0.5 wt% to about 2.0 wt%; and a total of molybdenum, chromium, vanadium and copper less than about 0.15 wt%. The steel has a first phase consisting of ferrite and a second phase comprising one or more constituents selected from the group consisting of carbide, pearlite, martensite, lower bainite, granular bainite, upper bainite, and degenerate upper bainite. A solute carbon content in the first phase is about 0.01 wt% or less.