摘要:
Transparent conductive coatings are polished using particle slurries in combination with mechanical shearing force, such as a polishing pad. Substrates having transparent conductive coatings that are too rough and/or have too much haze, such that the substrate would not produce a suitable optical device, are polished using methods described herein. The substrate may be tempered prior to, or after, polishing. The polished substrates have low haze and sufficient smoothness to make high-quality optical devices.
摘要:
Embodiments of the invention provide a method for forming a solar cell including forming a layer comprising alumina on a substrate and forming a transparent conductive layer on the layer comprising alumina. The method may also include forming a transparent conductive seed layer on the layer comprising alumina and forming a transparent conductive bulk layer on the transparent conductive seed layer. Embodiments of the invention also include photovoltaic devices having a substrate, a layer comprising alumina adjacent to the substrate, a zinc oxide-containing transparent conductive seed layer adjacent to the layer comprising alumina, and a zinc oxide-containing transparent conductive bulk layer adjacent the zinc oxide-containing transparent conductive seed layer.
摘要:
Methods for forming a nucleation promotion layer prior to formation of a transparent conductive layer suitable for use in PV cells are provided. In one embodiment, the method includes forming a seed layer on a substrate by materials sputtered from a first target disposed in a reactive sputter processing chamber, and forming a transparent conductive layer on the seed layer by materials sputtered from a second target disposed in the reactive sputter processing chamber, wherein the first and the second target are fabricated by a containing material having dopants formed therein and dopant concentration formed in the first target is higher than the dopant concentration formed in the second target.
摘要:
This disclosure provides spacers for smart windows. In one aspect, a window assembly includes a first substantially transparent substrate having an optically switchable device on a surface of the first substrate. The optically switchable device includes electrodes. A first electrode of the electrodes has a length about the length of a side of the optically switchable device. The window assembly further includes a second substantially transparent substrate a metal spacer between the first and the second substrates. The metal spacer has a substantially rectangular cross section, with one side of the metal spacer including a recess configured to accommodate the length of the first electrode such that there is no contact between the first electrode and the metal spacer. A primary seal material bonds the first substrate to the metal spacer and bonds the second substrate to the metal spacer.
摘要:
Methods for forming a nucleation promotion layer prior to formation of a transparent conductive layer suitable for use in PV cells are provided. In one embodiment, the method includes forming a seed layer on a substrate by materials sputtered from a first target disposed in a reactive sputter processing chamber, and forming a transparent conductive layer on the seed layer by materials sputtered from a second target disposed in the reactive sputter processing chamber, wherein the first and the second target are fabricated by a containing material having dopants formed therein and dopant concentration formed in the first target is higher than the dopant concentration formed in the second target.
摘要:
Methods of manufacturing electrochromic windows are described. Insulated glass units (IGU's) are protected, e.g. during handling and shipping, by a protective bumper. The bumper can be custom made using IGU dimension data received from the IGU fabrication tool. The bumper may be made of environmentally friendly materials. Laser isolation configurations and related methods of patterning and/or configuring an electrochromic device on a substrate are described. Edge deletion is used to ensure a good seal between spacer and glass in an IGU and thus better protection of an electrochromic device sealed in the IGU. Configurations for protecting the electrochromic device edge in the primary seal and maximizing viewable area in an electrochromic pane of an IGU are also described.
摘要:
Thin-film devices, for example electrochromic devices for windows, and methods of manufacturing are described. Particular focus is given to methods of patterning optical devices. Various edge deletion and isolation scribes are performed, for example, to ensure the optical device has appropriate isolation from any edge defects. Methods described herein apply to any thin-film device having one or more material layers sandwiched between two thin film electrical conductor layers. The described methods create novel optical device configurations.
摘要:
This disclosure provides spacers for smart windows. In one aspect, a window assembly includes a first substantially transparent substrate having an optically switchable device on a surface of the first substrate. The optically switchable device includes electrodes. A first electrode of the electrodes has a length about the length of a side of the optically switchable device. The window assembly further includes a second substantially transparent substrate a metal spacer between the first and the second substrates. The metal spacer has a substantially rectangular cross section, with one side of the metal spacer including a recess configured to accommodate the length of the first electrode such that there is no contact between the first electrode and the metal spacer. A primary seal material bonds the first substrate to the metal spacer and bonds the second substrate to the metal spacer.
摘要:
Embodiments of the invention provide a method for forming a solar cell including forming a layer comprising alumina on a substrate and forming a transparent conductive layer on the layer comprising alumina. The method may also include forming a transparent conductive seed layer on the layer comprising alumina and forming a transparent conductive bulk layer on the transparent conductive seed layer. Embodiments of the invention also include photovoltaic devices having a substrate, a layer comprising alumina adjacent to the substrate, a zinc oxide-containing transparent conductive seed layer adjacent to the layer comprising alumina, and a zinc oxide-containing transparent conductive bulk layer adjacent the zinc oxide-containing transparent conductive seed layer.