Abstract:
Techniques for performing adaptive resource partitioning are described. In one design, a node computes local metrics for different possible actions related to resource partitioning to allocate available resources to a set of nodes that includes the node. Each possible action is associated with a set of resource usage profiles for the set of nodes. The node sends the computed local metrics to at least one neighbor node in the set of nodes. The node also receives local metrics for the possible actions from the neighbor node(s). The node determines overall metrics for the possible actions based on the computed local metrics and the received local metrics. The node then determines allocation of the available resources to the set of nodes based on the overall metrics. For example, the node may select the action with the best overall metric and may utilize the available resources based on a resource usage profile for the selected action.
Abstract:
Techniques for performing resource partitioning are described. In an aspect, adaptive resource partitioning may be performed to dynamically allocate available resources for the uplink to nodes, e.g., base stations. Each node may be assigned a list of target interference-over-thermal (IoT) levels for the available resources by the adaptive resource partitioning. Each node may obtain a list of target IoT levels for itself and at least one list of target IoT levels for at least one neighbor node. The list of target IoT levels for each node may include a configurable target IoT level on each available resource for the node. Each node may schedule its UEs for transmission on the available resources (e.g., may determine transmit power levels and rates for the UEs) based on the target IoT levels for itself and the neighbor node(s) such that the target IoT levels for the neighbor node(s) can be met.
Abstract:
Methods, systems, apparatus and computer program products are provided to facilitate power control in wireless communication systems. A cell that is experiencing excessive interference conditions may generate an over-the-air overload indicator indicative of interference conditions at the cell. The over-the-air overload indicator is received by one or more user equipment in a neighboring cell. In response, the user equipment determines adjustments to its transmit power that reduce and/or eliminate the interference. This determination may be carried out by the user equipment, by the serving base station, or through cooperation between the user equipment and the serving base station. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules that allow a reader to quickly ascertain the disclosed subject matter. Therefore, it is to be understood that it should not be used to interpret or limit the scope or the meaning of the claims.
Abstract:
Techniques for performing association with leakage-based metrics in a wireless network are described. Association may be performed to select a serving node (e.g., a base station or a relay) for a station (e.g., a UE or a relay). In one design, at least one metric may be determined for at least one candidate node for possible association by the station. A metric for each candidate node may be determined based on leakage of the candidate node. The leakage of the candidate node may include interference due to the candidate node at stations not served by the candidate node (excluding the station). The metric for each candidate node may include a signal-to-leakage ratio (SLR), a geometry-to-leakage ratio (GLR), or a throughput-to-leakage ratio (TLR). A serving node for the station may be selected from among the at least one candidate node based on the at least one metric.
Abstract:
Techniques for cross-subframe and cross-carrier scheduling of uplink and downlink transmissions in a multi-carrier wireless communication system are disclosed. A base station can include cross-subframe, carrier indication (xSF/CIF) information in a PDCCH message to signal to a user equipment (UE) which subframes and/or component carriers pertain to control information carried therein. The UE may utilize the xSF/CIF information to determine to which subframes and/or component carriers the control information is to be applied.
Abstract:
Techniques for performing association and resource partitioning in a wireless network with relays are described. In an aspect, resource partitioning may be performed to allocate available resources to nodes and access/backhaul links of relays. In one design, a node computes local metrics for a plurality of possible actions related to resource partitioning. The node receives local metrics for the possible actions from at least one neighbor node and determines overall metrics for the possible actions based on the computed and received local metrics. The node determines resources allocated to a set of nodes and resources allocated to the access and backhaul links of at least one relay based on the overall metrics for the possible actions. In another aspect, association involving relays may be performed by taking into account the performance of the relays. In yet another aspect, association and resource partitioning may be performed jointly.
Abstract:
In a cellular wireless communication system, peer-to-peer (P2P) links between mobile devices are implemented, and controlled using an aggregate utility metric for a group of P2P and cellular links. A mobile node participating in a P2P link, or an eNB, may periodically broadcast an activity level indicator indicating a resource-dependent activity level of the link. The node may control the activity level in response to utility metrics received from members of neighboring P2P links to maximize an aggregate utility of the link and the neighboring P2P links sharing at least a subset of resources of a common frequency spectrum. Formation or termination of P2P links may be controlled in response to comparing a calculated achievable utility value to a current utility value of a link, and taking action calculated to maximize the aggregate utility value.
Abstract:
In a cellular wireless communication system, peer-to-peer (P2P) links between mobile devices are implemented, and controlled using an aggregate utility metric for a group of P2P and cellular links. A mobile node participating in a P2P link, or an eNB, may periodically broadcast an activity level indicator indicating a resource-dependent activity level of the link. The node may control the activity level in response to utility metrics received from members of neighboring P2P links to maximize an aggregate utility of the link and the neighboring P2P links sharing at least a subset of resources of a common frequency spectrum. Formation or termination of P2P links may be controlled in response to comparing a calculated achievable utility value to a current utility value of a link, and taking action calculated to maximize the aggregate utility value.
Abstract:
Methods and apparatus for supporting adaptive resource negotiation between evolved node Bs (eNBs) for enhanced inter-cell interference coordination (eICIC) are provided. This resource negotiation may occur via a network backhaul between the eNBs or, in some cases, using over-the-air messages (OAMs). For certain aspects, a first eNB may propose its adaptive resource partitioning information (ARPI) to a second eNB, where the second eNB may accept or reject the proposed resource partitioning. If the second eNB accepts the proposed partitioning, the second eNB may schedule resources, such as subframes, based on the accepted partitioning.
Abstract:
Techniques for supporting communication in a wireless network are described. In an aspect, association and resource partitioning may be performed jointly to select serving base stations for user equipments (UEs) and to allocate available resources to base stations. In another aspect, adaptive association may be performed to select serving base stations for UEs. In one design, a base station computes local metrics for different possible actions related to association and resource partitioning (or only association). The base station receives local metrics for the possible actions from at least one neighbor base station and determines overall metrics for the possible actions based on the computed and received local metrics. The base station determines serving base stations for a set of UEs and resources allocated to the set of base stations (or just serving base stations for the set of UEs) based on the overall metrics for the possible actions.