Abstract:
An electromagnetic actuator with flux feedback control includes two poles located on opposite sides of a soft-magnetic target. A bias flux is introduced that flows into both poles. Magnetic circuitry may be designed so that the total bias flux is independent or substantially independent of a position of the target with respect to the poles or the control flux. The electromagnetic actuator also includes flux sensors introduced into each gap between the poles and the target. The electromagnetic actuator further includes an actuator control circuit to command the current in the control coil to bring a difference between the readings of the two flux sensors to a targeted level. In some aspects, the force exerted on the actuator target in this arrangement may be proportional to the command signal regardless of the position of the actuator target, MMF drop in the soft-magnetic parts of the magnetic circuit, or the frequency.
Abstract:
A homopolar magnetic actuator is configured to exert controllable radial forces on a body adapted to rotate around an axis. The actuator comprises at least three radial magnetic pole assemblies distributed at some distances from each other along the axis, each including a plurality of poles adjacent to an actuator target on the body. Permanent magnets are used to induce bias magnetic fluxes in the assemblies with polarities alternating from assembly to assembly but remaining the same around the rotational axis. Having several small bias fluxes distributed between several pole assemblies instead of a large single bias flux facilitates designing an actuator with a high aspect ratio. A control coil around each pole can induce a control magnetic flux in the poles. These control fluxes affect magnetic flux distribution around the actuator target, resulting in magnetic forces exerted on the target.
Abstract:
Some embodiments of a fluid expansion system include a turbine generator apparatus in which the driven member is arranged on the outlet side of the turbine wheel. In such circumstances, the fluid output from the turbine wheel can flow towards the driven member, for example, to provide heat dissipation to some components of the turbine generator apparatus (e.g., generator electronics or the like). This arrangement of the turbine wheel relative to the driven member also permits the use of bearing supports on both the input side and the outlet side of the turbine wheel.
Abstract:
An electromagnetic actuator with flux feedback control includes two poles located on opposite sides of a soft-magnetic target. A bias flux is introduced that flows into both poles. Magnetic circuitry may be designed so that the total bias flux is independent or substantially independent of a position of the target with respect to the poles or the control flux. The electromagnetic actuator also includes flux sensors introduced into each gap between the poles and the target. The electromagnetic actuator further includes an actuator control circuit to command the current in the control coil to bring a difference between the readings of the two flux sensors to a targeted level. In some aspects, the force exerted on the actuator target in this arrangement may be proportional to the command signal regardless of the position of the actuator target, MMF drop in the soft-magnetic parts of the magnetic circuit, or the frequency.
Abstract:
A homopolar magnetic actuator is configured to exert controllable radial forces on a body adapted to rotate around an axis. The actuator comprises at least three radial magnetic pole assemblies distributed at some distances from each other along the axis, each including a plurality of poles adjacent to an actuator target on the body. Permanent magnets are used to induce bias magnetic fluxes in the assemblies with polarities alternating from assembly to assembly but remaining the same around the rotational axis. Having several small bias fluxes distributed between several pole assemblies instead of a large single bias flux facilitates designing an actuator with a high aspect ratio. A control coil around each pole can induce a control magnetic flux in the poles. These control fluxes affect magnetic flux distribution around the actuator target, resulting in magnetic forces exerted on the target.
Abstract:
Some embodiments of a fluid expansion system include a turbine generator apparatus in which the driven member is arranged on the outlet side of the turbine wheel. In such circumstances, the fluid output from the turbine wheel can flow towards the driven member, for example, to provide heat dissipation to some components of the turbine generator apparatus (e.g., generator electronics or the like). This arrangement of the turbine wheel relative to the driven member also permits the use of bearing supports on both the input side and the outlet side of the turbine wheel.