Abstract:
A footwear assembly having an upper configured to receive a foot and a sole assembly integrally connected to the upper. The sole assembly includes an outsole and a midsole coupled between the upper and the outsole. The sole assembly also includes a footwear insert coupled to the midsole having anisotropic and anti- puncture properties so as to provide protection, support, and stability to the foot of a wearer of the footwear assembly while still allowing for flexibility. The footwear insert is formed from a soft, dorsal layer having woven fabric, a hard, plantar layer formed from a fiber reinforced composite material bonded to the dorsal layer, and an interfacing polymer layer interposed between the dorsal and plantar layers and used to bond the two layers together. The layered arrangement has a high resistance to bending in a first direction and a low resistance to bending in an opposing second direction.
Abstract:
Provided are methods for preparing fabric laminated with polymer film(s) and the laminated fabric prepared according to the methods disclosed herein. The laminated fabric has flexibility similar to fabric not laminated with polymer films and improved adhesion and tensile strength.
Abstract:
An anisotropic composite material assembly comprising a first layer with a tensile modulus different from its compressive modulus and that exhibits variable modulus behavior. The first layer elastically buckle under compressions. A second layer has a tensile modulus substantially the same as its compressive modulus. The first and second layers are joined together, and the assembly is bendable in a first direction with an outer surface of the first layer being in compression and the assembly has a first bending stiffness during bending in the first direction. The assembly is bendable in a second direction opposite the first direction with the outer surface of the first layer being in tension, and the assembly has a second bending stiffness greater than the first bending stiffness during bending in the second direction.
Abstract:
Provided are methods for preparing fabric laminated with polymer film(s) and the laminated fabric prepared according to the methods disclosed herein. The laminated fabric has flexibility similar to fabric not laminated with polymer films and improved adhesion and tensile strength.
Abstract:
An axially stretchable fiber-reinforced composite material, comprising an elastically deformable matrix having a low modulus of elasticity, and a fabric core encapsulated by the matrix. The core comprises first fibers interlaced with second fibers, with the first fibers being in a non-parallel orientation relative to the material's longitudinal axis, and the second fibers are non-parallel relative to the first fibers when the composite material is in a retracted position. The composite material is stretchable between the retracted and extended positions. The fibers have a high modulus of elasticity. The composite material has a non-linear modulus relative to elongation of the composite material between the retraced and extended positions. Movement of the material toward the extended position causes the first and second fibers to rotate relative to each other and in a direction toward alignment with the longitudinal axis, and the matrix material biases the composite material toward the retracted position.