Abstract:
An apparatus and method for transmitting/receiving control information in a broadband wireless communication system using Half Frequency Division Duplex (H-FDD) are provided. An operation of a Mobile Station (MS) includes, in the case of a frame at which control information is not transmitted, performing uplink communication at a front end of the frame and, in the case of a frame at which the control information is transmitted, performing downlink communication at a front end of the frame.
Abstract:
An apparatus and method for transmitting/receiving an S-SCH in an Institute of Electrical and Electronics Engineers (IEEE) 802.16m wireless communication system are provided. A method for transmitting, by a transmitter, a Secondary Synchronization CHannel (S-SCH) in a communication system includes generating a sequence depending on a cell IDentification (ID), determining a subcarrier set comprising subcarriers to map the generated sequence, based on a Fast Fourier Transform (FFT) size and a segment ID, and mapping the generated sequence to the subcarriers of the determined subcarrier set.
Abstract:
An apparatus and method for supporting Hybrid Automatic Repeat reQuest (HARQ) in a broadband wireless communication system are provided. A method of performing HARQ by a Mobile Station (MS) in a wireless communication system includes receiving a control message including resource allocation information, decoding the control message, if the decoding is successful, determining whether a previous control message is lost, and if the previous control message is lost, transmitting one of a null signal and a specific indicator through a response channel.
Abstract:
A resource allocation for reducing overhead in a mobile communication system is provided. An operating method of a base station for changing a fixed resource allocation to reduce overhead in a mobile communication system includes calculating a total amount of resources allocated to a corresponding subframe in a period of a corresponding fixed allocation resource; when the total amount of the resources allocated to the corresponding subframe is greater than a threshold, temporarily canceling one or more corresponding fixed allocation resources to make the total amount of the resources allocated to the corresponding subframe less than or equal to the threshold; and reallocating the one or more canceled fixed allocation resources according to a corresponding rule.
Abstract:
An apparatus and method for selecting the best beam in a wireless communication system are provided. An operation of a Base Station (BS) includes repeatedly transmitting reference signals beamformed with a first width, receiving a feedback signal indicating at least one preferred-beam having the first width from at least one terminal, determining a direction range within which reference signals beamformed with a second width are to be transmitted and a transmission pattern, based on the at least one preferred-beam having the first width, repeatedly transmitting the reference signals beamformed with the second width within the determined direction range according to the transmission pattern, and receiving a feedback signal indicating at least one preferred-beam having the second width from the at least one terminal.
Abstract:
Apparatuses and methods for maintaining an optimal beam direction in a wireless communication system are provided. The method for operating a receiving node in a wireless communication system includes, determining a first transmission beam is determined as a preferred transmission beam using a plurality of reference signals transmitted by a transmitting node, generating preferred transmission beam information, transmitting the preferred transmission beam information to the transmitting node, receiving transmissions from the transmitting node via the first transmission beam, and determining whether a change of a transmission beam is necessary. When the change of the transmission beam is determined to be necessary, generating a beam change request and transmitting the beam change request to the transmitting node.
Abstract:
An apparatus and a method for transmitting feedback information of an asymmetric frequency band in a wireless communication system supporting multiple bands are provided. The feedback information transmission method includes, when at least two frequency bands used by a mobile station includes at least one asymmetric frequency band, confirming feedback channel information for the asymmetric frequency band based on system channel information of the asymmetric frequency band, and transmitting feedback information for the asymmetric frequency band over the confirmed feedback channel. The feedback channel information includes feedback channel information for the asymmetric frequency band allocated to a symmetric frequency band.
Abstract:
An apparatus and method for reduces an overhead caused by an operation transition gap in a Relay Station (RS) of a relay wireless communication system. The method includes identifying a signal delay time with an upper node. A transmission/reception operation transition time is determined through a negotiation with the upper node. An idle time is identified. An overhead caused by a transmission/reception operation transition is determined with consideration of a start time point of an Uplink (UL) subframe dependent on the signal delay time, the transmission/reception operation transition time, and the idle time. And communication is performed considering the overhead. The start time point of the UL subframe is set earlier than a start time point of a UL subframe of the upper node in consideration of the idle time.
Abstract:
An apparatus and method for transmitting/receiving an S-SCH in an Institute of Electrical and Electronics Engineers (IEEE) 802.16m wireless communication system are provided. A method for transmitting, by a transmitter, a Secondary Synchronization CHannel (S-SCH) in a communication system includes generating a sequence depending on a cell IDentification (ID), determining a subcarrier set comprising subcarriers to map the generated sequence, based on a Fast Fourier Transform (FFT) size and a segment ID, and mapping the generated sequence to the subcarriers of the determined subcarrier set.
Abstract:
A Synchronization CHannel (SCH) transmission method includes generating a Primary SCH (P-SCH) sequence according to supplementary information, the supplementary information comprising at least one of Base Station (BS) type information, Fast Fourier Transform (FFT) size information, BandWidth (BW) information, group information, sector information, and carrier type information, modulating the P-SCH sequence, mapping the modulated P-SCH sequence to subcarriers within a predefined subcarrier set, the subcarriers included in the subcarrier set being spaced one subcarrier interval apart, generating a P-SCH symbol by Orthogonal Frequency Division Multiplexing (OFDM)-modulating the P-SCH sequence mapped to the subcarriers, and transmitting the P-SCH symbol.