Abstract:
Embodiments in accordance with the present invention relate to techniques for the growth and attachment of single wall carbon nanotubes (SWNT), facilitating their use as robust and well-characterized tools for AFM imaging and other applications. In accordance with one embodiment, SWNTs attached to an AFM tip can function as a structural scaffold for nanoscale device fabrication on a scanning probe. Such a probe can trigger, with nanometer precision, specific biochemical reactions or conformational changes in biological systems. The consequences of such triggering can be observed in real time by single-molecule fluorescence, electrical, and/or AFM sensing. Specific embodiments in accordance with the present invention utilize sensing and manipulation of individual molecules with carbon nanotubes, coupled with single-molecule fluorescence imaging, to allow observation of spectroscopic signals in response to mechanically induced molecular changes. Biological macromolecules such as proteins or DNA can be attached to nanotubes to create highly specific single-molecule probes for investigations of intermolecular dynamics, for assembling hybrid biological and nanoscale materials, or for developing molecular electronics. In one example, electrical wiring of single redox enzymes to carbon nanotube scanning probes allows observation and electrochemical control over single enzymatic reactions by monitoring fluorescence from a redox-active cofactor or the formation of fluorescent products. Enzymes "nanowired" to the tips of carbon nanotubes in accordance with embodiments of the present invention, may enable extremely sensitive probing of biological stimulus-response with high spatial resolution, including product-induced signal transduction.
Abstract:
A device comprising an array of active regions for use in reacting one or more species in at least two of the active regions in a sequential process. The device has a transparent substrate member, which has a surface region and a silane material overlying the surface region; and a first active region formed overlying a first portion of the silane material. In an embodiment, the first active region has a first dimension of less than 1 micron in size and has one or more first molecules capable of binding to the first portion of the silane material. In an embodiment, the device has a second active region formed overlying a second portion of the silane material. The second active region has a second dimension of less than 1 micron in size and has one or more second molecules capable of binding to the second portion of the active region.
Abstract:
A device comprising an array of active regions for use in reacting one or more species in at least two of the active regions in a sequential process, e.g., sequential reactions. The device has a transparent substrate member, which has a surface region. The device has a silane material overlying the surface region. The device has a first active region formed overlying a first portion of the silane material. In a specific embodiment, the first active region has a first dimension of less than 1 micron in size and has one or more first molecules capable of binding to the first portion of the silane material. In a specific embodiment, the device has a second active region formed overlying a second portion of the silane material. The second active region has a second dimension of less than 1 micron in size and has one or more second molecules capable of binding to the second portion of the active region. In a specific embodiment, the device has a spatial distance separating the first active region and the second active region. In a preferred embodiment, the spatial distance is characterized by a dimension of 1 micron and less. The device has a fluid material in contact with the first active region, the second active region, and the spatial distance according to a specific embodiment. The device also has a reactant species within the fluid material. The reactant species is capable of spatially moving from the first active region to the second active region over the spatial distance of 1 micron and less within a time of less than 10 microseconds.
Abstract:
A method for fabricating assembled structures. The method includes providing a tip structure, which has a first end, a second end, and a length defined between the first end and the second end. The second end is a free end. The method includes attaching a nano-sized structure along a portion of the length of the tip structure to extend a total length of the tip structure to include the length of the tip structure and a first length associated with the nano-sized structure. The method includes shortening the nano-sized structure from the first length to a second length. The method also includes pushing the nano-sized structure in a direction parallel to the second length to reduce the second length to a third length of the nano-sized structure along the direction parallel to the second length to cause the nano-sized structure to move along a portion of the length of the tip structure.
Abstract:
A method for fabricating assembled structures. The method includes providing a tip structure, which has a first end, a second end, and a length defined between the first end and the second end. The second end is a free end. The method includes attaching a nano-sized structure along a portion of the length of the tip structure to extend a total length of the tip structure to include the length of the tip structure and a first length associated with the nano-sized structure. The method includes shortening the nano-sized structure from the first length to a second length. The method also includes pushing the nano-sized structure in a direction parallel to the second length to reduce the second length to a third length of the nano-sized structure along the direction parallel to the second length to cause the nano-sized structure to move along a portion of the length of the tip structure.
Abstract:
Embodiments in accordance with the present invention relate to techniques for the growth and attachment of single wall carbon nanotubes (SWNT), facilitating their use as robust and well-characterized tools for AFM imaging and other applications. In accordance with one embodiment, SWNTs attached to an AFM tip can function as a structural scaffold for nanoscale device fabrication on a scanning probe. Such a probe can trigger, with nanometer precision, specific biochemical reactions or conformational changes in biological systems. The consequences of such triggering can be observed in real time by single-molecule fluorescence, electrical, and/or AFM sensing. Specific embodiments in accordance with the present invention utilize sensing and manipulation of individual molecules with carbon nanotubes, coupled with single-molecule fluorescence imaging, to allow observation of spectroscopic signals in response to mechanically induced molecular changes. Biological macromolecules such as proteins or DNA can be attached to nanotubes to create highly specific single-molecule probes for investigations of intermolecular dynamics, for assembling hybrid biological and nanoscale materials, or for developing molecular electronics. In one example, electrical wiring of single redox enzymes to carbon nanotube scanning probes allows observation and electrochemical control over single enzymatic reactions by monitoring fluorescence from a redox-active cofactor or the formation of fluorescent products. Enzymes "nanowired" to the tips of carbon nanotubes in accordance with embodiments of the present invention, may enable extremely sensitive probing of biological stimulus-response with high spatial resolution, including product-induced signal transduction.