Abstract:
Negative pressure wound therapy apparatuses and dressings, and systems and methods for operating such apparatuses for use with dressings are disclosed. In some embodiments, controlling the delivery of therapy can be based on monitoring and detecting various operating conditions. An apparatus can have a controller configured to monitor the duty cycle of a source of negative pressure and, based on the monitored duty cycle, determine whether a leak is present. The controller can be configured to provide an indication that a leak is present. For example, the controller can be configured to suspend and/or pause the delivery of therapy, and to restart the delivery of therapy due to a timeout, request from a user, etc. In addition, the controller can be configured to pause and/or restart the delivery of therapy upon a request from the user, such as in response to the user operating a switch.
Abstract:
Some embodiments comprise a pump assembly for reduced pressure wound therapy, comprising a housing, a flow pathway through the pump, one or more valves in communication with the flow pathway, a pump supported within or by the housing, and a one-way flow valve in fluid communication with the pump. The pump assembly can have a pressure sensor in communication with the flow pathway through the pump, and at least one switch or button supported by the housing, the at least one switch or button being accessible to a user and being in communication with the controller. The one-way flow valve can be configured to substantially prevent a flow of gas through the one-way flow valve in a direction of flow away from the pump. The pump assembly can have a controller supported within or by the housing, the controller being configured to control an operation of the pump. The pump has been sterilized following the assembly of the pump such that an inside and an outside of the housing, the flow pathway, the one or more valves, the pump, the controller, the battery compartment, and the at least one switch or button have been sterilized.
Abstract:
A method and a suction port are disclosed for applying negative pressure to a wound dressing. The suction port comprises a connector portion for connecting the suction port to a source of negative pressure, a sealing surface for sealing the suction port to a cover layer of a wound dressing, and a liquid impermeable gas permeable filter element arranged to prevent a liquid entering the connector portion.
Abstract:
Negative pressure wound therapy apparatuses and dressings, and systems and methods for operating such apparatuses for use with dressings are disclosed. In some embodiments, controlling the delivery of therapy can be based on monitoring and detecting various operating conditions. An apparatus can have a controller configured to monitor the duty cycle of a source of negative pressure and, based on the monitored duty cycle, determine whether a leak is present. The controller can be configured to provide an indication that a leak is present. For example, the controller can be configured to suspend and/or pause the delivery of therapy, and to restart the delivery of therapy due to a timeout, request from a user, etc. In addition, the controller can be configured to pause and/or restart the delivery of therapy upon a request from the user, such as in response to the user operating a switch.
Abstract:
A method and apparatus are disclosed for dressing a wound. The wound dressing includes a transmission layer having a first surface and a further surface spaced apart from the first surface by a relax distance in a relaxed mode of operation. A plurality of spacer elements extend between the first and further surfaces and, in a forced mode of operation, are locatable whereby the first and further surfaces are spaced apart by a compression distance less than the relax distance.
Abstract:
A method and apparatus are disclosed for dressing a wound. The apparatus comprises a liquid and gas permeable transmission layer, an absorbent layer for absorbing wound exudate, the absorbent layer overlying the transmission layer, a gas impermeable cover layer overlying the absorbent layer and comprising a first orifice, wherein the cover layer is moisture vapour permeable.
Abstract:
A method and apparatus are disclosed for dressing a wound. The apparatus comprises an absorbent layer for absorbing wound exudate, a gas impermeable cover layer overlying the absorbent layer the cover layer, comprising at least one orifice Configured to allow negative pressure to be communicated though the cover layer in at least two spaced apart regions.
Abstract:
A method and apparatus are disclosed for dressing a wound. The apparatus comprises a liquid and gas permeable transmission layer, an absorbent layer for absorbing wound exudate, a gas impermeable cover layer overlying the absorbent layer and the transmission layer, the cover layer comprising an orifice connected to the transmission layer, and at least one element configured to reduce the rate at which wound exudate moves towards the orifice when a negative pressure is applied at the orifice.