Abstract:
A method of protecting steel in a reinforced concrete element is disclosed. The reinforced concrete of the element contains an electrolyte. The method involves providing a primary anode, which is a sacrificial anode, and providing a secondary anode, which is connected to a positive terminal of at least one source of direct current, 'DC, power. The primary anode and secondary anode are arranged to have an ionic connection with the steel in the reinforced concrete element via the electrolyte. The primary anode is connected to the steel in the reinforced concrete element using an electron conductor. The negative terminal of the source of DC power is connected to the steel in the reinforced concrete element using an electron conductor.
Abstract:
High performance cementitious concretes or mortars and bonding agents developed for use as patch repair materials for corrosion damaged concrete often have high resistivities that inhibit the performance of sacrificial anodes located within patch repair areas. A method of repair is disclosed that comprises removing the corrosion damaged concrete to expose steel and form a cavity to receive high performance concrete repair materials and forming within the parent concrete exposed in this cavity a smaller distinct cavity for assembling a sacrificial anode assembly and placing within this anode cavity a pliable viscous ionically conductive backfill and a sacrificial anode and an activating agent to form a sacrificial anode assembly and connecting the anode to the steel and covering the anode assembly in the anode cavity with a repair material to restore the profile of the concrete structure. In this arrangement a high resistivity repair material promotes the flow of protection current to steel in adjacent contaminated concrete that is at risk of corrosion
Abstract:
The installation and use of embedded sacrificial anodes to protect reinforced concrete may be improved. In one example a cavity [2] is formed in the concrete [3] and a puttylike backfill [4] is placed in the cavity and a compact discrete anode comprising a sacrificial metal element [1] is inserted into the backfill and a space is provided into which the backfill may move when subjected to a pressure arising from the formation of voluminous sacrificial metal corrosion products and a high current is passed from the anode to the steel in the concrete to arrest steel corrosion and activate the anode in the backfill. The space may be provided by venting the backfill to space outside the cavity through an opening [5] or by including a void space within the backfill [6] or a void space within the cavity [7].
Abstract:
The connections to anodes used in impressed current electrochemical treatments of steel in concrete construction are at risk from rapid corrosion arising from induced anodic dissolution when these connections are embedded in reinforced concrete. A corrosion resistant connection that does not require any further protective insulation can be formed using titanium conductors [2,6] and connecting the conductors together at a conductor-conductor connection [5] using a clamping device comprising a non-metallic material wherein the clamping device only brings corrosion resistant material into contact with the conductors.
Abstract:
The installation and use of embedded sacrificial anodes to protect reinforced concrete may be improved. In one example a cavity [2] is formed in the concrete [3] and a puttylike backfill [4] is placed in the cavity and a compact discrete anode comprising a sacrificial metal element [1] is inserted into the backfill and a space is provided into which the backfill may move when subjected to a pressure arising from the formation of voluminous sacrificial metal corrosion products and a high current is passed from the anode to the steel in the concrete to arrest steel corrosion and activate the anode in the backfill. The space may be provided by venting the backfill to space outside the cavity through an opening [5] or by including a void space within the backfill [6] or a void space within the cavity [7].
Abstract:
An array of anode assemblies for insertion at a plurality of locations in a gap between a section of a reinforced concrete structure and another solid structure is provided. Each anode assembly comprises an expandable member, an anode attached to the expandable member for protecting a steel reinforcement in the reinforced concrete structure, and an anode connector for interconnecting the array of anode assemblies. In use, each anode assembly of the array of anode assemblies is inserted into the gap between the section of the reinforced concrete structure and the solid structure at the plurality of locations. The expandable member of each anode assembly is configured to expand so as to press the anode into contact with a surface of the reinforced concrete structure.
Abstract:
A method of monitoring the protection delivered to steel bars (1) in concrete construction protected by a discrete sacrificial anode cathodic protection system comprising measuring potentials at potential measurement points located at close intervals in a representative area while the installed sacrificial anodes (2) are operating wherein the potential measurement points include at least three points (3) all located between but away from the same nearby installed anodes (2) and are all preferably located between the same pair of adjacent parallel steel bars. The results are used to identify the position of local anodes. The identification of anodes at locations where none are installed indicates that the steel may not be protected and the discrete sacrificial anode cathodic protection system is not operating effectively.
Abstract:
A sacrificial anode assembly (1) for cathodically protecting and/or passivating a metal section, comprising: (a) a cell, which has an anode (2) and a cathode (3) arranged so as to not be in electronic contact with each other but so as to be in ionic contact with each other such that current can flow between the anode and the cathode; (b) a connector (6) attached to the anode of the cell for electrically connecting the anode to the metal section to be cathodically protected; and (c) a sacrificial anode (7) electrically connected in series with the cathode of the cell; wherein the cell is otherwise isolated from the environment such that current can only flow into and out of the cell via the sacrificial anode and the connector. The invention also provides a method of cathodically protecting metal in which such a sacrificial anode assembly is cathodically attached to the metal via the connector of the assembly, and a reinforced concrete structure wherein some or all of the reinforcement is cathodically protected by such a method.
Abstract:
A method of using an activator in a compact discrete sacrificial anode assembly that is assembled within an anode cavity in concrete is described. The method includes providing a sacrificial anode, and an activator to activate the sacrificial anode, and a backfill to embed the sacrificial anode and the activator in an anode cavity in the concrete. The activator is provided as a discrete contained unit for dispersion through the backfill to surfaces of the sacrificial anode, and the unit at least in part separates the activator from any electrolyte in contact with the sacrificial anode. The activator is separated from the backfill prior to use. The advantages of this invention include limiting corrosion of the sacrificial metal element prior to use, containment of the health and safety risk presented by an activator, and providing a facility to control the quantity of activator installed in a sacrificial anode assembly. A surprising benefit results from a transient increase in the temperature of the assembly.
Abstract:
A method of protecting steel in concrete using a sacrificial anode assembly is disclosed. The sacrificial anode assembly comprises a sacrificial metal element (11), an activator, a backfill (13), a connector (17) and a spacer (12). An anode cavity (14) is formed in the concrete for the purposes of installing the sacrificial anode assembly therein. The sacrificial metal element and activator are embedded in the backfill in the cavity. The spacer holds the activator away from the sides of the cavity. The connector is used to connect the sacrificial metal element to the reinforcing steel (16). The backfill is a pliable, viscous backfill that does not harden before the installation process is completed.