Abstract:
The current invention is intended to render artifacts, which are introduced by changes in coefficients in an FIR filter, inaudible by applying a window to the filtered signal that results in the output of the filter (e.g. FIR filter), in which the coefficients are being changed, supplying little or none of the total output while the output of the filter, in which the coefficients are stable, supplies most or all of the total output.
Abstract:
Improved methods are described for the creation of impressions for use in the manufacture of hearing aid components. In addition methods for manufacturing components of hearing aid systems using improved ear canal impressions are described.
Abstract:
A processor comprises instructions to adjust a bias of an input signal in order to decrease a duty cycle of a pulse modulated optical signal. The bias can be increased, decreased, or maintained in response to one or more measured values of the signal. In many embodiments, a gain of the signal is adjusted with the bias in order to inhibit distortion. The bias can be adjusted slowly in order to inhibit audible noise, and the gain can be adjusted faster than the bias in order to inhibit clipping of the signal. In many embodiments, one or more of the bias or the gain is adjusted in response to a value of the signal traversing a threshold amount. The value may comprise a trough of the signal traversing the threshold.
Abstract:
Systems, devices and methods for communication include an ear canal microphone configured for placement in the ear canal to detect high frequency sound localization cues. An external microphone positioned away from the ear canal can detect low frequency sound, such that feedback can be substantially reduced. The canal microphone and the external microphone are coupled to a transducer, such that the user perceives sound from the external microphone and the canal microphone with high frequency localization cues and decreased feedback. Wireless circuitry can be configured to connect to many devices with a wireless protocol, such that the user can receive and transmit audio signals. A bone conduction sensor can detect near-end speech of the user for transmission with the wireless circuitry in noisy environment. Noise cancellation of background sounds near the user can improve the user's hearing of desired sounds.
Abstract:
In the present application a contact hearing system is described. In this contact hearing system, a signal processor receives ambient sounds, processes those sounds and transmits them to a transmit coil positioned in the ear. The sounds are transmitted from the processor to the transmit coil via a coaxial cable. A receive coil is used to receive signals from the transmit coil wherein the received signals are representative of the ambient sound. Signals are then transmitted from the receive coil to a balanced armature microactuator located adjacent the tympanic membrane.
Abstract:
A contact hearing device includes a chassis, sulcus platform and umbo platform wherein the chassis is formed as a single continuous material, the sulcus platform is formed as a single continuous material, and the umbo platform is formed as a single continuous material. The chassis may include a receiver mount, a motor mount pocket and a central frame. The sulcus platform includes one or more registration features adapted to mate with at least a portion of the chassis, the umbo platform includes a drive post landing pad, the drive post landing pad including at least one alignment feature.
Abstract:
Hearing aid devices, methods of manufacture, methods of use, and kits are provided. In certain aspects, the hearing aid devices comprise an apparatus having a transducer and a retention structure comprising a shape profile corresponding to a tissue of the user, and a layer of elastomer.
Abstract:
The present invention is directed to a wearable system wherein elements of the system, including various sensors adapted to detect biometric and other data and/or to deliver drugs, are positioned proximal to, on or in the ear canal of a person. In embodiments of the invention, elements of the system, including drug delivery devices, are positioned on or in the ear canal for extended periods of time. For example, an element of the system may be positioned on the tympanic membrane of a user and left there overnight, for multiple days, months, or years. Because of the position and longevity of the system elements in the ear canal, the present invention has many advantages over prior wearable biometric and drug delivery devices.
Abstract:
A device to transmit an audio signal to a user comprises a transducer and a support. The support is configured for placement on the eardrum to drive the eardrum. The transducer is coupled to the support at a first outer location to decrease occlusion and a second inner location to drive the eardrum. The transducer may comprise one or more of an electromagnetic balanced armature transducer, a piezoelectric transducer, a magnetostrictive transducer, a photostrictive transducer, or a coil and magnet. The device may find use with open canal hearing aids.
Abstract:
A hearing aid device for placement in an ear of a user includes an elongate support and a transducer. The elongate support has a proximal portion and a distal end, and the transducer is attached to the elongate support near the distal end. The support is adapted to position the transducer near an eardrum while the proximal portion is placed at the location near an ear canal opening. The elongate support is sized to minimize contact with the ear between the proximal portion and distal end. The elongate support permits sound waves to travel along the ear canal. In some embodiments, a microphone is positioned in the ear canal along the support, for example inside the support, to provide directionally dependent sound localization cues, and the transducer on the distal end of the elongate support comprises a coil assembly coupled to a magnet positioned on the tympanic membrane.