Abstract:
An airbag assembly with a reduced-cost knee airbag cushion and internal tethers can be formed from a single rectangular panel of material so that there is very little material waste. A pleat can be formed in a rear face so that the combination of tethers and pleat help the cushion deploy with favorable characteristics and adopt an arced shape when inflated. The cushion can have apertures for inserting an inflator with mounting stems partially within the cushion so that the mounting stems can be used to couple the cushion to an airbag housing. The assembly can also have a bag strap formed from a single piece of fabric that can wrap around a rolled and/or folded cushion. The assembly can also have a stabilizer strap that can be coupled to the cushion and to the airbag housing so that during deployment, the cushion does not skew or twist.
Abstract:
An inflator device for inflating an inflatable cushion of an inflatable cushion restraint system. The inflator device includes a supply of gas generant material disposed within a sealed chamber, and an initiator device in reaction initiation combination with the supply of gas generant material. A venting orifice connects the chamber to the surrounding ambient environment, and a rupturable seal seals the venting orifice. Upon reaction initiation of the gas generant material to produce inflation gas, the rupturable seal ruptures to vent the chamber to the ambient environment. A valve assembly can be disposed adjacent the venting orifice. A moveable valve piston, in combination with an actuator device, can block the venting orifice as needed to close the venting orifice and stop inflation gas venting. An optional tether release mechanism can be used in combination with the valve assembly to release a cushion tether upon closing of the venting orifice.
Abstract:
A passenger airbag assembly having a first cushion and a second cushion is disclosed. An inflator mechanism that independently inflates the first cushion and the second cushion may also be added. The inflator mechanism may either be a dual stage inflator or two separate inflators. Preferably, the airbag assembly is designed such that the inflator mechanism begins the inflation of the first cushion prior to beginning the inflation of the second cushion. A housing may also be added to the airbag assembly. The housing encloses the inflator mechanism and is attached to the first cushion and the second cushion. The airbag assembly may be designed such that when the first cushion and the second cushion are inflated, the second cushion is positioned between the first cushion and the vehicle's windshield. Furthermore, the airbag assembly may also be made such that when the first cushion is inflated, the first cushion will push a vehicle occupant towards the vehicle's passenger seat.
Abstract:
Inflatable airbag cushions can be rolled and/or folded into a housing assembly. The housing assembly aids in coupling an inflator to the airbag and a vehicle structure. The housing also couples the airbag to a vehicle structure. The housing can be mounted behind an knee bolster or steering wheel of a vehicle and has a cover that can be flush with the cabin side of the mounted position. The housing cover can be a cosmetically finished piece or a cosmetically unfinished piece. The housing cover can be an integral part of the housing, and may be used in combination with a one-piece inflator mounting bracket and heat shield.
Abstract:
Inflatable airbag cushions can be formed with one or more inflatable chambers, each having different inflated widths and volumes. For example, an inflatable knee airbag can have a first chamber that is adjacent to the periphery of the airbag and a second chamber that is nested within the first chamber. The two chambers can be fluidly coupled and the second chamber may have a vent formed in it that can release inflation gas out of the airbag. The airbag may have more than one nested chamber. The nested chambers can be defined by one or more internal tethers that can be formed from one or more pieces of material. The airbag can be configured such that it and any internal tethers are produced from a single panel of material.
Abstract:
The present invention relates to a pelvic airbag (42). The pelvic airbag has a front panel and a rear panel that is attached to the front panel. The airbag is made of metal, plastic, or combinations of metal and plastic and is configured such that it maybe retained in a vehicle door between the inner skin and the trim panel. The airbag is further constructed such that when it is in the uninflated configuration, the thickness of the airbag is between about 2 to about 25 millimeters. An attachment mechanism (44) may also be attached to the airbag. The attachment mechanism is designed to attach the airbag to the vehicle door. Additionally, an inflator housing may be attached to the rear panel. The inflator housing houses an inflator that is designed to inflate the airbag in the event of an accident or crash.
Abstract:
An airbag module has a rigid cushion with an integrated inflator. The cushion has a rear cushion panel and the inflator may have a front inflator plate attached to the rear cushion panel. A rear inflator plate is optionally provided and may be positioned within the cushion or outside the cushion. A pyrotechnic may be disposed within the space between the front inflator plate and the rear cushion panel and/or the rear inflator plate. An initiator may be seated in the rear inflator plate and/or the rear cushion panel to initiate combustion of the pyrotechnic. Instead of the front inflator plate, the inflator may have an expanse of tape that secures the pyrotechnic and/or the initiator to the interior of the cushion. The pyrotechnic may be sealed by the tape or by a foil pouch. The initiator may be secured by the tape or rear inflator plate.
Abstract:
A fabric knee airbag (110) that is capable of withstanding high internal pressures is provided. The knee airbag (110) is formed from one continuous fabric sheet. The knee airbag (110) has a plurality of loops (125) formed in the walls of the airbag. Internal tethers are disposed within the airbag cushion and are attached to oppositely facing loops (125). The internal tethers (136) enable the airbag to withstand the high internal pressure by maintaining the airbag (110) at a constant volume and shape upon activation by an inflator. The knee airbag further includes an external tether (142) attached to the exterior of the airbag wall to control the direction of the deployment of the knee airbag.
Abstract:
A passenger airbag assembly (30) Having a first cushion (32) and a second cushion ( 34) is disclosed. An inflator mechanism (36) that independently inflates the first cushion and the second cushion may also to be added. The inflator mechanism may either be a dual stage inflator or two separate inflators. Preferably, the airbag assembly is designed such that the inflator mechanism begins the inflation of the first cushion prior to beginning the inflation of the second cushion. A housing may (50) also be added to the airbag assembly. The housing encloses the inflator mechanism and is attached to the first cushion and the second cushion. The airbag assembly may be designed such that when the first cushion and the second on shion are inflated, the second cushion is positioned between the first cushion and the vehicle's windshield. Furthermore, the airbag assembly may also be made such that when the first cushion is inflated, the first cushion will push a vehicIe occupant towards the vehicle's passenger seat.
Abstract:
An airbag module has a rigid cushion with an integrated inflator. The cushion has a rear cushion panel and the inflator may have a front inflator plate attached to the rear cushion panel. A rear inflator plate is optionally provided and may be positioned within the cushion or outside the cushion. A pyrotechnic may be disposed within the space between the front inflator plate and the rear cushion panel and/or the rear inflator plate. An initiator may be seated in the rear inflator plate and/or the rear cushion panel to initiate combustion of the pyrotechnic. Instead of the front inflator plate, the inflator may have an expanse of tape that secures the pyrotechnic and/or the initiator to the interior of the cushion. The pyrotechnic may be sealed by the tape or by a foil pouch. The initiator may be secured by the tape or rear inflator plate.