Abstract:
A microinverter is provided herein and comprises DC side MOSFETs connected to an input side of the microinverter, AC side MOSFETs connected to an output of the microinverter, and a plurality of gate drivers connected to the AC side MOSFETs and configured to automatically drive the microinverter without a DC voltage being applied to the input side of the microinverter.
Abstract:
A resonant parallel triple active bridge converter comprising a DC port configured to receive DC energy, an AC port configured to produce AC energy, and an AC line cycle energy storage port, coupled to both the DC port and the AC port, where the AC line cycle energy storage port comprises an energy storage device for storing energy during an energy conversion process.
Abstract:
Methods and systems for servicing distributed generators are provided herein. For example, a system for servicing distributed generators comprises a distributed generator comprising a plurality of components, a controller communicatively connected to the plurality of components, and an unmanned aerial vehicle communicatively coupled to at least one of the plurality of components or the controller for at least one of transmitting and receiving data relating to the plurality of components.
Abstract:
A method and apparatus for converting DC power to AC power. For example, apparatus for converting DC power to AC power comprises an input adapted to be coupled to a high-powered distributed generator having a maximum voltage at a first voltage and an arc fault mitigation device, coupled to the input, for providing a second voltage at the input that is lower than the first voltage, where a difference between the first voltage and the second voltage is not large enough to cause an arc.
Abstract:
An apparatus and a method for commissioning a distributed energy generation system comprising a user device comprising: at least one sensor; and one or more processors coupled to one or more non-transitory computer readable media storing instructions thereon which, when executed by the one or more processor, cause the one or more processors to perform operations comprising: creating a system record; scanning, using the at least one sensor, component indicium for at least one component of the distributed energy system; connecting the user device to a gateway of the distributed energy generation system; provisioning the at least one component of the distributed energy generation system; and disconnecting from the gateway.
Abstract:
A method and apparatus for autonomous rapid shut-down of a power conditioner. In one embodiment, the method comprises determining an amount of active and reactive current generated by a power conditioner; determining whether the amount of active and reactive current satisfies an open circuit threshold; and initiating, when the amount of active and reactive current satisfies the open circuit threshold, deactivation of the power conditioner.
Abstract:
A method and apparatus for controlling power production. In one embodiment, the method comprises determining a predicted weather event; determining a predicted power production impact for a distributed generator (DG) array based on the predicted weather event; and controlling power production from one or more components of the DG array to compensate for the predicted power production impact.
Abstract:
A system, method, and apparatus for converting DC input power to AC output power, including a DC-AC inverter employing: a first feedback loop for determining a maximum power point (MPP) and operating the DC-AC inverter proximate the MPP. A second feedback loop for determining a difference between a first power measurement and a second power measurement, producing an error signal indicative of the difference, and coupling the error signal to the first feedback loop to adjust at least one operating parameter of the DC-AC inverter to drive toward the MPP, where the first power measurement and the second power measurement are each determined based on a phase shift between an AC output voltage from the DC-AC inverter and an AC output current from the DC-AC inverter.
Abstract:
A method and apparatus for a three port converter with independent dual input comprising: a first DC port for coupling a first half-bridge circuit of the three-port converter to a first external DC line, a second DC port for coupling a second half-bridge circuit of the three-port converter to a second external DC line, wherein the second half-bridge circuit is decoupled from the first half-bridge circuit, and an AC port for coupling to an external AC line, wherein (i) the first half-bridge circuit and the second half-bridge circuit are operated as a full H-bridge during a full-bridge operating mode, and (ii) the first half-bridge circuit or the second half-bridge circuit is operated as a half H-bridge during a half-bridge operating mode.
Abstract:
The present invention is directed towards a serially connected micro-inverter (SCMI) system comprising a plurality of power sources for producing DC power, a plurality of micro-inverters, where each micro-inverter is coupled to at least one power source of the plurality of power sources, for converting the DC power into AC power, an AC bus for coupling the plurality of micro-inverters in series to form a string and for coupling the AC power an AC line; and a controller, coupled to the string, for measuring an output signal of one or more strings of series coupled micro-inverters, comparing the measured output signal to a desired signal for the string; and adjusting a phase angle of an output from each micro-inverter in the one or more strings until a difference between the measured output signal and the desired signal is less than a predetermined threshold value.