Abstract:
A system and method are provided for forming energy filters layers or shutter components, including energy/light directing/scattering layers that are actively electrically switchable. The energy filters or shutter components are operable between at least a first mode in which the layers, and thus the presentation of the shutter components, appear substantially transparent when viewed from an energy/light incident side, and a second mode in which the layers, and thus the presentation of the energy filters or shutter components, appear opaque to the incident energy impinging on the energy incident side. The differing modes are selectable by electrically energizing, differentially energizing and/or de-energizing electric fields in a vicinity of the energy scattering layers, including electric fields generated between a pair of transparent electrodes sandwiching an energy scattering layer. Refractive indices of transparent particles, and the transparent matrices in which the particles are fixed, are tunable according to the applied electric fields.
Abstract:
A device, system and method for protecting electronic systems from failure or damage when such systems are subjected to undesired conducted or radiated energy such as electromagnetic pulse or electromagnetic interference. The invention also reduces the amount of conducted or radiated emissions from an electronic system. A novel, non- conductive signal feedthrough allows a desired signal to be communicated with electrical connectivity. An incoming desired electrical signal is converted to vibrational energy by a piezoelectric transducer, which is communicated into the interior volume of a conductive electrical enclosure housing a system to be protected, where it is converted back to electrical for processing by the system to be protected by a second piezoelectric transducer. The signal feedthrough allows a continuous conductive enclosure to be employed, providing protection from undesired radiated energy. The signal feedthrough allows communication without requiring electrical conduction through the feedthrough, thus protecting against undesired conducted energy.
Abstract:
A method for producing an electrically-powered device and/or component that is embeddable in a solid structural component is provided. The electrically powered device includes an attached autonomous electrical power source in a form of a unique, environmentally-friendly structure that is configured to transform thermal energy at any temperature above absolute zero to an electric potential without any external stimulus including physical movement or deformation energy. The autonomous electrical power source component provides a mechanism for generating renewable energy as primary for the electrically-powered device and/or component once an integrated structure including the electrically-powered device is deployed in an environment that restricts future access to the electrical power source for servicing, recharge, replacement, replenishment or the like. The structure of the autonomous electrical power source component converts minimal thermal energy to a usable electrical power potential over a sustained period of time without external disturbance to the power source.
Abstract:
A system and method for removing unwanted particles and pathogens, including but not limited to viruses, from a volume of gas. The system exhibits low resistance to air flow, allowing a high volume flow and rate of gas volume to be processed. Cold surfaces reduce the temperature of incoming gas causing condensation of water from the gas. The condensate contains unwanted particles and pathogens that have been removed from the volume of gas. The condensate is caused to pass over heated surfaces that comprising a hydrophobic coating, and also comprising catalytic surfaces with anti-viral coatings to neutralize contagions. Micro- spray nozzles, which may incorporate ionization, may be utilized to spray collected water onto the heated surfaces where the contagion may be utilized. The system may comprise multiple stages. The system provides better contagion neutralization and higher flow rates than prior art systems while using less energy, and producing less noise.
Abstract:
A method for forming a unique, environmentally-friendly micron scale autonomous electrical power source is provided in a configuration that generates renewable energy for use in electronic systems, electronic devices and electronic system components. The configuration includes a first conductor with a facing surface conditioned to have a low work function, a second conductor with a facing surface having a comparatively higher work function, and a dielectric layer, not more than 200 nm thick, sandwiched between the respective facing surfaces of the first conductor and the second conductor. The autonomous electrical power source formed according to the disclosed method is configured to harvest minimal thermal energy from any source in an environment above absolute zero. An autonomous electrical power source component is also provided that includes a plurality of autonomous electrical power source constituent elements electrically connected to one another to increase a power output of the autonomous electrical power source.
Abstract:
A unique, environmentally-friendly micron scale autonomous electrical power source is provided for generating renewable energy, or a renewable energy supplement, in electronic systems, electronic devices and electronic system components. The autonomous electrical power source includes a first conductor with a facing surface conditioned to have a low work function, a second conductor with a facing surface having a comparatively higher work function, and a dielectric layer of not more than 200nm in thickness sandwiched between the respective facing surfaces of the first conductor and the second conductor. The autonomous electrical power source is configured to harvest minimal thermal energy from any source in an environment above absolute zero. An autonomous electrical power source component is also provided that includes a plurality of autonomous electrical power source constituent elements electrically connected to one another to increase a power output of the autonomous electrical power source.
Abstract:
An electrically-powered device, structure and/or component is provided that includes an attached autonomous electrical power source in a form of a unique, environmentally-friendly structure that is configured to transform thermal energy at any temperature above absolute zero to an electric potential without any external stimulus including physical movement or deformation energy. The autonomous electrical power source component provides a mechanism for generating renewable energy, or a renewable energy supplement, as primary or auxiliary power for the electrically-powered device, structure and/or component. The autonomous electrical power source component is formed of one or more elements, each of which includes a first conductor having a surface with a comparatively low work function, a second conductor having a surface with the comparatively high work function and a dielectric layer on a scale of 200 nm or less interposed between the conductors.
Abstract:
A system and method are provided for forming electromagnetic energy transmissive layers, which are particularly configured to selectively scatter specific and selectable wavelengths of electromagnetic energy, while allowing remaining wavelengths to pass therethrough. Processes are provided by which to form, or otherwise incorporate, one or more energy scattering layers, including uniquely implementing optical light scattering techniques in such energy scattering layers, and to objects, object portions, wall plates, lenses, filters, screens and the like that are formed of, or that otherwise incorporate, such transmissive energy-scattering layers. Refractive indices of particles fixed in a matrix are tunable in order that the finished layers provide an opaque appearance when viewed from an energy- incident excited by light in the visible spectrum. A color, pattern, texture or image of the scattering layer may be rendered according to an individual user's desires, the layers being substantially-transparent to light passing through layers.