Abstract:
A valve actuator including a magnetic angle sensor is disclosed. The magnetic angle sensor may function as an absolute position encoder. The magnetic angle sensor may also function as an incremental position encoder. The magnetic angle sensor may generate angular velocity data. The magnetic angle sensor may be used in quarter-turn and single-turn rotary valve actuators. The magnetic angle sensor may also be used in multi-turn rotary and linear valve actuators.
Abstract:
Torque indicator markings incorporated with handwheel devices connected to actuators or valve assemblies provide visual indication of the amount of torque being applied to an actuator or valve assembly by the handwheel device. Tattletale torque indicators incorporated with a handwheel device further provide a persistent indication of the maximum amount of torque applied to an actuator or valve assembly connected to the handwheel device.
Abstract:
The present invention utilizes operation of a valve actuator to generate electrical power. A portion of the mechanical energy generated by operation of a valve actuator is converted to electrical energy. The mechanical energy may be converted to electrical energy at the same time as the valve actuator is operating or the mechanical energy may be stored for later conversion. A valve actuator may be operated manually, electrically, pneumatically, or hydraulically. Generated electrical energy may also be stored.
Abstract:
A torque limiting device with an override mechanism coupled to a valve assembly capable of limiting the torque applied to the valve assembly and selectively being overridden to permit the application of excessive torque to the valve assembly. Tattletale devices capable of indicating when an override mechanism has been activated can also be integrated with the torque limiting device.
Abstract:
Non-contact torque, thrust, strain, and other data sensing of a valve actuator or valve is disclosed. A sensor may include a surface acoustic wave device.
Abstract:
Non-contact torque, thrust, strain, and other data sensing of a valve actuator or valve is disclosed. A sensor may include a surface acoustic wave device.
Abstract:
Torque indicator markings incorporated with handwheel devices connected to actuators or valve assemblies provide visual indication of the amount of torque being applied to an actuator or valve assembly by the handwheel device. Tattletale torque indicators incorporated with a handwheel device further provide a persistent indication of the maximum amount of torque applied to an actuator or valve assembly connected to the handwheel device.
Abstract:
A device for axial load measurement on a mechanical control device (10) having rotating shaft (30) maybe used to derive a torque measurement. A mechanical control device (10) may comprise a valve actuator for fluid flow control devices. The load measurement device may include a beam (65a) op eratively connected to a rotatable shaft and configured to deform under axial displacement of the shaft. A sensor (80) maybe coupled with the at least one beam (65a) and configured to produce an output signal related to the axial displacement of the shaft. The beam may be retained between two bearings (74) of the rotatable shaft at a first end, and fixed to the housing (120) of the mechanical control device at a second end. The first end of the beam (65a) may displace axially with the rotatable shaft. The beam (65a) may comprise a discrete segment of a uniform width and thickess.