Abstract:
The present invention provides compositions and methods relating to or derived from antigen binding proteins and antigen binding protein-FGF21 fusions that specifically bind to ß-Klotho, or ß-Klotho and one or more of FGFR1c, FGFR2c, FGFR3c, and FGFR4. In some embodiments the antigen binding proteins and antigen binding protein-FGF21 fusions induce FGF21-like signaling. In some embodiments, an antigen binding protein or antigen binding protein-FGF21 fusion antigen binding component is a fully human, humanized, or chimeric antibody, binding fragments and derivatives of such antibodies, and polypeptides that specifically bind to ß-Klotho, or ß-Klotho and one or more of FGFR1c, FGFR2c, FGFR3c, and FGFR4. Other embodiments provide nucleic acids encoding such antigen binding proteins and antigen binding protein-FGF21 fusions, and fragments and derivatives thereof, and polypeptides, cells comprising such polynucleotides, methods of making such antigen binding proteins and antigen binding protein-FGF21 fusions, and fragments and derivatives thereof, and polypeptides, and methods of using such antigen binding proteins and antigen binding protein-FGF21 fusions, fragments and derivatives thereof, and polypeptides, including methods of treating or diagnosing subjects suffering from type 2 diabetes, obesity, NASH, metabolic syndrome and related disorders or conditions.
Abstract:
The present invention provides compositions and methods relating to or derived from antigen binding proteins and antigen binding protein-FGF21 fusions that specifically bind to β-Klotho, or β-Klotho and one or more of FGFR1c, FGFR2c, FGFR3c, and FGFR4. In some embodiments the antigen binding proteins and antigen binding protein-FGF21 fusions induce FGF21-like signaling. In some embodiments, an antigen binding protein or antigen binding protein-FGF21 fusion antigen binding component is a fully human, humanized, or chimeric antibody, binding fragments and derivatives of such antibodies, and polypeptides that specifically bind to β-Klotho, or β-Klotho and one or more of FGFR1c, FGFR2c, FGFR3c, and FGFR4. Other embodiments provide nucleic acids encoding such antigen binding proteins and antigen binding protein-FGF21 fusions, and fragments and derivatives thereof, and polypeptides, cells comprising such polynucleotides, methods of making such antigen binding proteins and antigen binding protein-FGF21 fusions, and fragments and derivatives thereof, and polypeptides, and methods of using such antigen binding proteins and antigen binding protein-FGF21 fusions, fragments and derivatives thereof, and polypeptides, including methods of treating or diagnosing subjects suffering from type 2 diabetes, obesity, NASH, metabolic syndrome and related disorders or conditions.
Abstract:
The invention relates to targeted binding agents against α5β1 and uses of such agents. More specifically, the invention relates to fully human monoclonal antibodies directed to α5β1. The described targeted binding agents are useful in the treatment of diseases associated with the activity and/or overproduction of α5β1 and as diagnostics.
Abstract:
Targeted binding agents directed to the antigen PDGFR-alpha and uses of such agents are disclosed herein. More specifically the invention relates to fully human monoclonal antibodies directed to the antigen PDGFR-alpha and uses of these antibodies. Aspects of the invention also relate to hybridomas or other cell lines expressing such antibodies. The described targeted binding agents and antibodies are useful as diagnostics and for the treatment of diseases associated with the activity and/or overexpression of PDGFR-alpha.
Abstract:
Polypeptides are provided. Antibodies or antigen binding domains are provided which bind such polypeptides. Also provided are methods of obtaining an antibody that binds tumor necrosis factor (TNF)-related apoptosis-inducing ligand ("TRAIL") Receptor-2 (TR-2) comprising administering at least one of such polypeptides to an animal and obtaining an antibody that binds TR-2 from the animal. Antibodies reactive with TR-2 are provided. Also provided are cells producing antibodies reactive with TR-2, pharmaceutical compositions comprising antibodies reactive with TR-2, methods using antibodies reactive with TR-2, and kits comprising antibodies reactive with TR-2. Also provided are methods of decreasing or preventing binding of an antibody to TR-2 by administering such a polypeptide.
Abstract:
There are disclosed alpha4beta7 heterodimer-specific antigen binding proteins, nucleic acids encoding them, and methods of making and using them.
Abstract:
The invention relates to targeted binding agents against α5β1 and uses of such agents. More specifically, the invention relates to fully human monoclonal antibodies directed to α5β1. The described targeted binding agents are useful in the treatment of diseases associated with the activity and/or overproduction of α5β1 and as diagnostics.
Abstract:
The invention relates to monoclonal antibodies that bind hepcidin and methods of making and using such antibodies. Also provided are methods of treating hepcidin-related disorders.
Abstract:
Targeted binding agents, such antibodies directed to the antigen aVß6 and uses of such agents are described. In particular, fully human monoclonal antibodies directed to the antigen aVß6 are disclosed. Nucleotide sequences encoding, and amino acid sequences comprising, heavy and light chain immunoglobulin molecules, particularly sequences corresponding to contiguous heavy and light chain sequences spanning the framework regions and/or complementarity determining regions (CDR's), specifically from FR1 through FR4 or CDR1 through CDR3 are disclosed. Hybridomas or other cell lines expressing such immunoglobulin molecules and monoclonal antibodies are also disclosed.
Abstract:
Targeted binding agents, such antibodies directed to the antigen αVβ6 and uses of such agents are described. In particular, fully human monoclonal antibodies directed to the antigen αVβ6 are disclosed. Nucleotide sequences encoding, and amino acid sequences comprising, heavy and light chain immunoglobulin molecules, particularly sequences corresponding to contiguous heavy and light chain sequences spanning the framework regions and/or complementarity determining regions (CDR's), specifically from FR1 through FR4 or CDR1 through CDR3 are disclosed. Hybridomas or other cell lines expressing such immunoglobulin molecules and monoclonal antibodies are also disclosed.