Abstract:
A deposition source (100) for depositing material on a substrate (10) is described. The deposition source (100) includes a sputter source (110). Further, the deposition source (100) includes a reflector shield arrangement (120) for reflecting material provided from the sputter source towards the substrate. Further, a deposition apparatus and a method of depositing material on a substrate are described.
Abstract:
A crucible to evaporate a material is described. The crucible includes a first material compartment configured to contain material to be evaporated, a first heater to heat the first material compartment, a second material compartment configured to contain material to be evaporated, and a second heater to heat the second material compartment. A vapor guiding compartment is provided. The vapor guiding compartment has a first opening providing a first fluid communication path between the first material compartment and the vapor guiding compartment and has a second opening providing a second fluid communication path between the second material compartment and the vapor guiding compartment. Further, the vapor guiding compartment has a third opening connectable to a vapor distributor. The crucible further includes a third heater to heat the vapor guiding compartment.
Abstract:
A method of pretreating an oscillation crystal (110) for measuring a deposition rate is described. The method includes polarizing a measurement surface (115) of the oscillation crystal. In particular, the method includes pretreating the measurement surface of the oscillation crystal with an oxygen containing plasma, wherein pretreating is conducted at a temperature of 10°C ≤ T≤ 80°C for a time period t of 1 min ≤ t ≤ 5min. Further, a deposition rate measurement device, an evaporation source and a deposition apparatus are described.
Abstract:
A material deposition assembly for depositing a material on a substrate in a vacuum deposition chamber is described. The material deposition assembly includes at least one material deposition source. The deposition source includes a distribution pipe configured for directing evaporated material to the substrate, the distribution pipe having a counterpart flange with a counterpart spheroid surface being rotational symmetric about an axis of circular symmetry, the counterpart spheroid surface having a first height along the axis. The deposition source includes a crucible to evaporate the material, the crucible having a flange with a spheroid surface being rotational symmetric about the axis, the spheroid surface having a second height along the axis, wherein the second height is different from the first height, particularly the second height is different by at least 20% relative to the first height.
Abstract:
A deposition source for depositing evaporated material is described. The deposition source (100) includes a distribution arrangement (110) having a plurality of outlets (111) for providing an evaporated first material (A) and an evaporated second material (B) in a main deposition direction (101). Additionally, the deposition source includes a measurement assembly (120) for measuring a first deposition rate of the evaporated first material (A) and for measuring a second deposition rate of the evaporated second material (B). The measurement assembly (120) has a main detection direction (102) being in a cross direction to the main deposition direction (101). Further, the deposition source (100) includes a separation element (130) for separating the evaporated first material (A) and the evaporated second material (B) in a cross direction to the main detection direction (102). The separation element (130) is arranged in the main detection direction (102) between the plurality of outlets (111) and the measurement assembly (120).
Abstract:
Die Erfindung betrifft ein Verfahren und eine Vorrichtung für die Herstellung von Deckelektroden auf organischen elektronischen Elementen. Aufgabe der Erfindung ist es, Möglichkeiten für die Herstellung von Deckelektroden auf organischen elektronischen Elementen anzugeben, mit denen diese Deckelektroden mit konstanter Schichtdicke, reproduzierbar und erhöhter Beschichtungsrate, bei Vermeidung von Defekten oder eine Beeinflussung organischer Schichtkomponenten, ausgebildet werden können. Bei der Erfindung werden Halbzeuge für organische elektronische Elemente ohne Deckelektroden in einem Abstand zu mindesten zwei aus dem Deckelektrodenwerkstoff gebildeten Targets in einer Vakuumkammer angeordnet. Die Halbzeuge und die Targets werden mit jeweils einer Magnetron Sputterquelle mit einer Transportvorrichtung relativ zueinander bewegt. Die Magnetron Sputterquellen werden mit den Targets alternierend mit elektrischer Spannung beaufschlagt und zwischen den Targets wird ein Plasma generiert, mit dessen freien Ladungsträgern die Deckelektroden auf den Halbzeugen ausgebildet werden.
Abstract:
An evaporation source is provided. The evaporation source comprises a vapor distribution assembly (130) with a plurality of vapor nozzles (131) for directing an evaporated source material toward a substrate (10), and a shielding device (120) for at least partially blocking the evaporated source material (15) emitted from the plurality of vapor nozzles, the shielding device (120) being magnetically held at the vapor distribution assembly (130). Further, an evaporation system with an evaporation source and an evaporation method are provided.