Abstract:
Disclosed is a composition of matter comprising a biologically active substance bound to a graphene-coated dielectric-core particle, and methods for making and using the same.
Abstract:
Methods and apparatus for implementing thermal printing techniques onto thermally sensitive print media use one or more laser arrays to provide optical heating. Thermal management of the laser arrays is described. Techniques for alignment of multiple monolithic arrays onto a common carrier are described. Various output optics are described.
Abstract:
A building surface treatment biocide is provided for the treatment of offending bacteria, fungi, mycelium, spores and proteins on surfaces of common building materials, such as residential and commercial dwellings, office space, public schools, government buildings, modular buildings, and transportation systems. According to an embodiment of the invention, the biocide contains a nonionic surfactant, an antimicrobial agent, and a botanical extract of a plant selected from the Liliaceae and Cactus families, the extract retaining the active enzymes and amino acids of the plant. Also provided are methods of making and applying the biocide. Preferred application techniques include spray, atomization, and fumigation.
Abstract:
Apparatus for implementing a thermal printing technique onto thermally sensitive print media use one or more laser arrays to provide optical heating. A technique for alignment of multiple monolithic arrays onto a common carrier such that the constant pitch of parallel output beams is maintained as described.
Abstract:
Methods and apparatus for implementing thermal printing techniques onto thermally sensitive print media use one or more laser arrays to provide optical heating. Thermal management of the laser arrays is described. Techniques for alignment of multiple monolithic arrays onto a common carrier are described. Various output optics are described.
Abstract:
Methods and apparatus for implementing thermal printing techniques onto thermally sensitive print media use one or more laser arrays to provide optical heating. Thermal management of the laser arrays is described. Techniques for alignment of multiple monolithic arrays onto a common carrier are described. Various output optics are described.
Abstract:
A building surface treatment biocide is provided for the treatment of offending bacteria, fungi, mycelium, spores and proteins on surfaces of common building materials, such as residential and commercial dwellings, office space, public schools, government buildings, modular buildings, and transportation systems. According to an embodiment of the invention, the biocide contains a nonionic surfactant, an antimicrobial agent, and a botanical extract of a plant selected from the Liliaceae and Cactus families, the extract retaining the active enzymes and amino acids of the plant. Also provided are methods of making and applying the biocide. Preferred application techniques include spray, atomization, and fumigation.
Abstract:
Methods and apparatus for implementing a printing technique onto thermally sensitive print media use one or more laser arrays to provide optical heating. Thermal management of the laser arrays by modulation circuit for varying the drive current to each laser in the array according to predetermined calibration algorithm
Abstract:
Methods and apparatus for implementing thermal printing techniques onto thermally sensitive print media use one or more laser arrays to provide optical heating. Thermal management of the laser arrays is described. Techniques for alignment of multiple monolithic arrays onto a common carrier are described. Various output optics are described.
Abstract:
Methods and apparatus for implementing thermal printing techniques onto thermally sensitive print media use one or more laser arrays to provide optical heating. Thermal management of the laser arrays and the use of a heat sink (11) are described.